diff options
| author | Douglas Rumbaugh <dbr4@psu.edu> | 2025-06-09 15:33:12 -0400 |
|---|---|---|
| committer | Douglas Rumbaugh <dbr4@psu.edu> | 2025-06-09 15:33:12 -0400 |
| commit | 7be77899cb9da63db7e0e69c34218e1815240a79 (patch) | |
| tree | b4a03c0738d8ea5acfd467863bc6dcdb7eceecbb /chapters/design-space.tex | |
| parent | 8659cd7134d145b14895524118fef9caeeb71355 (diff) | |
| download | dissertation-7be77899cb9da63db7e0e69c34218e1815240a79.tar.gz | |
updates
Diffstat (limited to 'chapters/design-space.tex')
| -rw-r--r-- | chapters/design-space.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/chapters/design-space.tex b/chapters/design-space.tex index 64b658f..9865b26 100644 --- a/chapters/design-space.tex +++ b/chapters/design-space.tex @@ -140,7 +140,7 @@ and so we will need to derive this result using a different approach. \begin{theorem} The amortized insertion cost for generalized BSM with a growth factor of -$s$ is $\Theta\left(\frac{B(n)}{n} \cdot \frac{1}{2}(s-1) \cdot ( (s-1)\log_s n + s)\right)$. +$s$ is $\Theta\left(\frac{B(n)}{n} \cdot s\log_s n)\right)$. \end{theorem} \begin{proof} |