summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDouglas Rumbaugh <dbr4@psu.edu>2025-06-09 15:33:12 -0400
committerDouglas Rumbaugh <dbr4@psu.edu>2025-06-09 15:33:12 -0400
commit7be77899cb9da63db7e0e69c34218e1815240a79 (patch)
treeb4a03c0738d8ea5acfd467863bc6dcdb7eceecbb
parent8659cd7134d145b14895524118fef9caeeb71355 (diff)
downloaddissertation-7be77899cb9da63db7e0e69c34218e1815240a79.tar.gz
updates
-rw-r--r--chapters/design-space.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/chapters/design-space.tex b/chapters/design-space.tex
index 64b658f..9865b26 100644
--- a/chapters/design-space.tex
+++ b/chapters/design-space.tex
@@ -140,7 +140,7 @@ and so we will need to derive this result using a different approach.
\begin{theorem}
The amortized insertion cost for generalized BSM with a growth factor of
-$s$ is $\Theta\left(\frac{B(n)}{n} \cdot \frac{1}{2}(s-1) \cdot ( (s-1)\log_s n + s)\right)$.
+$s$ is $\Theta\left(\frac{B(n)}{n} \cdot s\log_s n)\right)$.
\end{theorem}
\begin{proof}