summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMarkus Teich <markus.teich@stusta.mhn.de>2016-02-11 16:26:12 +0100
committerMarkus Teich <markus.teich@stusta.mhn.de>2016-02-11 16:26:12 +0100
commitf6582b68b03fe25fe0296b685af6b5924cca7df9 (patch)
tree28eaea01de4bdcfb78e568885e533bc4fd18ab4f
parentbfafc91da7b51be4e1543b64ee118fff2e3a4cfb (diff)
downloadslock-f6582b68b03fe25fe0296b685af6b5924cca7df9.tar.gz
update copyright year in -v output
-rw-r--r--slock.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/slock.c b/slock.c
index fa7ec84..cf49555 100644
--- a/slock.c
+++ b/slock.c
@@ -296,7 +296,7 @@ main(int argc, char **argv) {
int screen;
if ((argc == 2) && !strcmp("-v", argv[1]))
- die("slock-%s, © 2006-2015 slock engineers\n", VERSION);
+ die("slock-%s, © 2006-2016 slock engineers\n", VERSION);
if ((argc == 2) && !strcmp("-h", argv[1]))
usage();
'n116' href='#n116'>116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*
 * include/framework/structure/ExtensionStructure.h
 *
 * Copyright (C) 2023 Douglas B. Rumbaugh <drumbaugh@psu.edu> 
 *                    Dong Xie <dongx@psu.edu>
 *
 * Distributed under the Modified BSD License.
 *
 */
#pragma once

#include <atomic>
#include <cstdio>
#include <vector>

#include "framework/structure/BufferView.h"
#include "framework/structure/InternalLevel.h"

#include "framework/util/Configuration.h"

#include "psu-util/timer.h"

namespace de {

template <RecordInterface R, ShardInterface<R> S, QueryInterface<R, S> Q, LayoutPolicy L=LayoutPolicy::TEIRING>
class ExtensionStructure {
    typedef S Shard;
    typedef BufferView<R> BuffView;

    typedef struct {
        size_t reccnt;
        size_t reccap;

        size_t shardcnt;
        size_t shardcap;
    } level_state;

    typedef std::vector<level_state> state_vector;

public:
    ExtensionStructure(size_t buffer_size, size_t scale_factor, double max_delete_prop)
        : m_scale_factor(scale_factor)
        , m_max_delete_prop(max_delete_prop)
        , m_buffer_size(buffer_size)
    {}

    ~ExtensionStructure() = default;

    /*
     * Create a shallow copy of this extension structure. The copy will share
     * references to the same levels/shards as the original, but will have its
     * own lists. As all of the shards are immutable (with the exception of
     * deletes), the copy can be restructured with reconstructions and flushes
     * without affecting the original. The copied structure will be returned
     * with a reference count of 0; generally you will want to immediately call
     * take_reference() on it.
     *
     * NOTE: When using tagged deletes, a delete of a record in the original
     * structure will affect the copy, so long as the copy retains a reference
     * to the same shard as the original. This could cause synchronization
     * problems under tagging with concurrency. Any deletes in this context will
     * need to be forwarded to the appropriate structures manually.
     */
    ExtensionStructure<R, S, Q, L> *copy() {
        auto new_struct = new ExtensionStructure<R, S, Q, L>(m_buffer_size, m_scale_factor, 
                                                             m_max_delete_prop);
        for (size_t i=0; i<m_levels.size(); i++) {
            new_struct->m_levels.push_back(m_levels[i]->clone());
        }

        new_struct->m_refcnt = 0;
        new_struct->m_current_state = m_current_state;

        return new_struct;
    }

    /*
     * Search for a record matching the argument and mark it deleted by
     * setting the delete bit in its wrapped header. Returns 1 if a matching
     * record was found and deleted, and 0 if a matching record was not found.
     *
     * This function will stop after finding the first matching record. It is
     * assumed that no duplicate records exist. In the case of duplicates, this
     * function will still "work", but in the sense of "delete first match".
     */
    int tagged_delete(const R &rec) {
        for (auto level : m_levels) {
            if (level && level->delete_record(rec)) {
                return 1;
            }
        }

        /*
         * If the record to be erased wasn't found, return 0. The
         * DynamicExtension itself will then search the active
         * Buffers.
         */
        return 0;
    }

    /*
     * Flush a buffer into the extension structure, performing any necessary
     * reconstructions to free up room in L0.
     *
     * FIXME: arguably, this should be a method attached to the buffer that
     * takes a structure as input.
     */
    inline bool flush_buffer(BuffView buffer) {
        state_vector tmp = m_current_state;

        if (tmp.size() == 0) {
            grow(tmp);
        }

        assert(can_reconstruct_with(0, buffer.get_record_count(), tmp));
        flush_buffer_into_l0(std::move(buffer));

        return true;
    }

    /*
     * Return the total number of records (including tombstones) within all
     * of the levels of the structure.
     */
    size_t get_record_count() {
        size_t cnt = 0;

        for (size_t i=0; i<m_levels.size(); i++) {
            if (m_levels[i]) cnt += m_levels[i]->get_record_count();
        }

        return cnt;
    }

    /*
     * Return the total number of tombstones contained within all of the
     * levels of the structure.
     */
    size_t get_tombstone_count() {
        size_t cnt = 0;

        for (size_t i=0; i<m_levels.size(); i++) {
            if (m_levels[i]) cnt += m_levels[i]->get_tombstone_count();
        }

        return cnt;
    }

    /*
     * Return the number of levels within the structure. Note that not
     * all of these levels are necessarily populated.
     */
    size_t get_height() {
        return m_levels.size();
    }

    /*
     * Return the amount of memory (in bytes) used by the shards within the
     * structure for storing the primary data structure and raw data.
     */
    size_t get_memory_usage() {
        size_t cnt = 0;
        for (size_t i=0; i<m_levels.size(); i++) {
            if (m_levels[i]) cnt += m_levels[i]->get_memory_usage();
        }

        return cnt;
    }

    /*
     * Return the amount of memory (in bytes) used by the shards within the
     * structure for storing auxiliary data structures. This total does not
     * include memory used for the main data structure, or raw data.
     */
    size_t get_aux_memory_usage() {
        size_t cnt = 0;
        for (size_t i=0; i<m_levels.size(); i++) {
            if (m_levels[i]) {
                cnt += m_levels[i]->get_aux_memory_usage();
            }
        }

        return cnt;
    }

    /*
     * Validate that no level in the structure exceeds its maximum tombstone
     * capacity. This is used to trigger preemptive compactions at the end of
     * the reconstruction process.
     */
    bool validate_tombstone_proportion() {
      long double ts_prop;
      for (size_t i = 0; i < m_levels.size(); i++) {
        if (m_levels[i]) {
          ts_prop = (long double)m_levels[i]->get_tombstone_count() /
                    (long double)calc_level_record_capacity(i);
          if (ts_prop > (long double)m_max_delete_prop) {
            return false;
          }
        }
      }

      return true;
    }

    bool validate_tombstone_proportion(level_index level) {
        long double ts_prop =  (long double) m_levels[level]->get_tombstone_count() / (long double) calc_level_record_capacity(level);
        return ts_prop <= (long double) m_max_delete_prop;
    }

    /*
     * Return a reference to the underlying vector of levels within the
     * structure.
     */
    std::vector<std::shared_ptr<InternalLevel<R, S, Q>>> &get_levels() {
        return m_levels;
    }

    /* 
     * NOTE: This cannot be simulated, because tombstone cancellation is not
     * cheaply predictable. It is possible that the worst case number could
     * be used instead, to allow for prediction, but compaction isn't a
     * major concern outside of sampling; at least for now. So I'm not
     * going to focus too much time on it at the moment.
     */
    ReconstructionVector get_compaction_tasks() {
        ReconstructionVector tasks;
        state_vector scratch_state = m_current_state;

        /* if the tombstone/delete invariant is satisfied, no need for compactions */
        if (validate_tombstone_proportion()) {
            return tasks;
        }

        /* locate the first level to violate the invariant */
        level_index violation_idx = -1;
        for (level_index i=0; i<m_levels.size(); i++) {
            if (!validate_tombstone_proportion(i))  {
                violation_idx = i;
                break;
            }
        }

        assert(violation_idx != -1);

        level_index base_level = find_reconstruction_target(violation_idx, scratch_state);
        if (base_level == -1) {
            base_level = grow(scratch_state);
        }

        for (level_index i=base_level; i>0; i--) {
            /*
             * The amount of storage required for the reconstruction accounts
             * for the cost of storing the new records, along with the
             * cost of retaining the old records during the process
             * (hence the 2x multiplier).
             *
             * FIXME: currently does not account for the *actual* size
             * of the shards, only the storage for the records
             * themselves.
             */
            size_t reccnt = m_levels[i - 1]->get_record_count();
            if constexpr (L == LayoutPolicy::LEVELING) {
                if (can_reconstruct_with(i, reccnt, scratch_state)) {
                    reccnt += m_levels[i]->get_record_count();
                }
            }
            tasks.add_reconstruction(i-i, i, reccnt);
        }

        return tasks;
    }

    /*
     *
     */
    ReconstructionVector get_reconstruction_tasks(size_t buffer_reccnt, 
                                                 state_vector scratch_state={}) {
        /* 
         * If no scratch state vector is provided, use a copy of the
         * current one. The only time an empty vector could be used as
         * *real* input to this function is when the current state is also
         * empty, so this should would even in that case.
         */
        if (scratch_state.size() == 0) {
            scratch_state = m_current_state;
        }

        ReconstructionVector reconstructions;
        size_t LOOKAHEAD = 1;
        for (size_t i=0; i<LOOKAHEAD; i++) {
            /*
             * If L0 cannot support a direct buffer flush, figure out what 
             * work must be done to free up space first. Otherwise, the
             * reconstruction vector will be initially empty.
             */
            if (!can_reconstruct_with(0, buffer_reccnt, scratch_state)) {
                auto local_recon = get_reconstruction_tasks_from_level(0, scratch_state);

                /* 
                 * for the first iteration, we need to do all of the
                 * reconstructions, so use these to initially the returned 
                 * reconstruction list
                 */
                if (i == 0) {
                    reconstructions = local_recon;
                    /*
                     * Quick sanity test of idea: if the next reconstruction
                     * would be larger than this one, steal the largest
                     * task from it and run it now instead.
                     */
                } else if (local_recon.get_total_reccnt() > reconstructions.get_total_reccnt()) {
                    auto t = local_recon.remove_reconstruction(0);
                    reconstructions.add_reconstruction(t);
                }
            }

            /* simulate the buffer flush in the scratch state */
            scratch_state[0].reccnt += buffer_reccnt;
            if (L == LayoutPolicy::TEIRING || scratch_state[0].shardcnt == 0) {
                scratch_state[0].shardcnt += 1;
            }

        }

        return std::move(reconstructions);
    }


    /*
     *
     */
    ReconstructionVector get_reconstruction_tasks_from_level(level_index source_level, state_vector &scratch_state) {
        ReconstructionVector reconstructions;

        /*
         * Find the first level capable of sustaining a reconstruction from
         * the level above it. If no such level exists, add a new one at
         * the bottom of the structure.
         */
        level_index base_level = find_reconstruction_target(source_level, scratch_state);
        if (base_level == -1) {
            base_level = grow(scratch_state);
        }

        /*
         * Determine the full set of reconstructions necessary to open up
         * space in the source level.
         */
        for (level_index i=base_level; i>source_level; i--) {
            size_t recon_reccnt = scratch_state[i-1].reccnt;
            size_t base_reccnt = recon_reccnt;

            /*
             * If using Leveling, the total reconstruction size will be the
             * records in *both* base and target, because they will need to
             * be merged (assuming that target isn't empty).
             */
            if constexpr (L == LayoutPolicy::LEVELING) {
                if (can_reconstruct_with(i, base_reccnt, scratch_state)) {
                    recon_reccnt += scratch_state[i].reccnt;
                }
            }
            reconstructions.add_reconstruction(i-1, i, recon_reccnt);

            /*
             * The base level will be emptied and its records moved to
             * the target.
             */
            scratch_state[i-1].reccnt = 0;
            scratch_state[i-1].shardcnt = 0;

            /*
             * The target level will have the records from the base level
             * added to it, and potentially gain a shard if the LayoutPolicy
             * is tiering or the level currently lacks any shards at all.
             */
            scratch_state[i].reccnt += base_reccnt;
            if (L == LayoutPolicy::TEIRING || scratch_state[i].shardcnt == 0) {
                scratch_state[i].shardcnt += 1;
            }
        }

        return std::move(reconstructions);
    }

    /*
     * Combine incoming_level with base_level and reconstruct the shard,
     * placing it in base_level. The two levels should be sequential--i.e. no
     * levels are skipped in the reconstruction process--otherwise the
     * tombstone ordering invariant may be violated.
     */
    inline void reconstruction(level_index base_level, level_index incoming_level) {
        size_t shard_capacity = (L == LayoutPolicy::LEVELING) ? 1 : m_scale_factor;

        if (base_level >= m_levels.size()) {
            m_levels.emplace_back(std::shared_ptr<InternalLevel<R, Shard, Q>>(new InternalLevel<R, Shard, Q>(base_level, shard_capacity)));

            m_current_state.push_back({0, calc_level_record_capacity(base_level), 
                                       0, shard_capacity});
        }

        if constexpr (L == LayoutPolicy::LEVELING) {
            /* if the base level has a shard, merge the base and incoming together to make a new one */
            if (m_levels[base_level]->get_shard_count() > 0) {
                m_levels[base_level] = InternalLevel<R, Shard, Q>::reconstruction(m_levels[base_level].get(), m_levels[incoming_level].get());
            /* otherwise, we can just move the incoming to the base */
            } else {
                m_levels[base_level] = m_levels[incoming_level];
            }

        } else {
            m_levels[base_level]->append_level(m_levels[incoming_level].get());
            m_levels[base_level]->finalize();
        }

        /* place a new, empty level where the incoming level used to be */
        m_levels[incoming_level] = std::shared_ptr<InternalLevel<R, Shard, Q>>(new InternalLevel<R, Shard, Q>(incoming_level, (L == LayoutPolicy::LEVELING) ? 1 : m_scale_factor));

        /* 
         * Update the state vector to match the *real* stage following
         * the reconstruction 
         */
        m_current_state[base_level] = {m_levels[base_level]->get_record_count(), 
            calc_level_record_capacity(base_level), m_levels[base_level]->get_shard_count(), shard_capacity};
        m_current_state[incoming_level] = {0, calc_level_record_capacity(incoming_level), 0, shard_capacity};
    }

    bool take_reference() {
        m_refcnt.fetch_add(1);
        return true;
    }

    bool release_reference() {
        assert(m_refcnt.load() > 0);
        m_refcnt.fetch_add(-1);
        return true;
    }

    size_t get_reference_count() {
        return m_refcnt.load();
    }

    std::vector<void *> get_query_states(std::vector<std::pair<ShardID, Shard*>> &shards, void *parms) {
        std::vector<void*> states;

        for (auto &level : m_levels) {
            level->get_query_states(shards, states, parms);
        }

        return states;
    }

private:
    size_t m_scale_factor;
    double m_max_delete_prop;
    size_t m_buffer_size;

    std::atomic<size_t> m_refcnt;

    std::vector<std::shared_ptr<InternalLevel<R, S, Q>>> m_levels;

    /* 
     * A pair of <record_count, shard_count> for each level in the
     * structure. Record counts may be slightly inaccurate due to
     * deletes.
     */
    state_vector m_current_state;

    /*
     * Add a new level to the scratch state and return its index.
     *
     * IMPORTANT: This does _not_ add a level to the extension structure
     * anymore. This is handled by the appropriate reconstruction and flush
     * methods as needed. This function is for use in "simulated"
     * reconstructions.
     */
    inline level_index grow(state_vector &scratch_state) {
        level_index new_idx = m_levels.size();
        size_t new_shard_cap = (L == LayoutPolicy::LEVELING) ? 1 : m_scale_factor;

        scratch_state.push_back({0, calc_level_record_capacity(new_idx), 
                                   0, new_shard_cap});
        return new_idx;
    }

    /*
     * Find the first level below the level indicated by idx that
     * is capable of sustaining a reconstruction and return its
     * level index. If no such level exists, returns -1. Also
     * returns -1 if idx==0, and no such level exists, to simplify
     * the logic of the first buffer flush.
     */
    inline level_index find_reconstruction_target(level_index idx, state_vector &state) {

        /* 
         * this handles the very first buffer flush, when the state vector
         * is empty.
         */
        if (idx == 0 && state.size() == 0) return -1;

        size_t incoming_rec_cnt = state[idx].reccnt;
        for (level_index i=idx+1; i<state.size(); i++) {
            if (can_reconstruct_with(i, incoming_rec_cnt, state)) {
                return i;
            }

            incoming_rec_cnt = state[idx].reccnt;
        }

        return -1;
    }

    inline void flush_buffer_into_l0(BuffView buffer) {
        size_t shard_capacity = (L == LayoutPolicy::LEVELING) ? 1 : m_scale_factor;

        if (m_levels.size() == 0) {
            m_levels.emplace_back(std::shared_ptr<InternalLevel<R, Shard, Q>>(new InternalLevel<R, Shard, Q>(0, shard_capacity)));

            m_current_state.push_back({0, calc_level_record_capacity(0), 
                                       0, shard_capacity});
        }

        if constexpr (L == LayoutPolicy::LEVELING) {
            // FIXME: Kludgey implementation due to interface constraints.
            auto old_level = m_levels[0].get();
            auto temp_level = new InternalLevel<R, Shard, Q>(0, 1);
            temp_level->append_buffer(std::move(buffer));

            if (old_level->get_shard_count() > 0) {
                m_levels[0] = InternalLevel<R, Shard, Q>::reconstruction(old_level, temp_level);
                delete temp_level;
            } else {
                m_levels[0] = std::shared_ptr<InternalLevel<R, Shard, Q>>(temp_level);
            }
        } else {
            m_levels[0]->append_buffer(std::move(buffer));
        }

        /* update the state vector */
        m_current_state[0].reccnt = m_levels[0]->get_record_count();
        m_current_state[0].shardcnt = m_levels[0]->get_shard_count(); 
    }

    /*
     * Mark a given memory level as no-longer in use by the tree. For now this
     * will just free the level. In future, this will be more complex as the
     * level may not be able to immediately be deleted, depending upon who
     * else is using it.
     */ 
    inline void mark_as_unused(std::shared_ptr<InternalLevel<R, Shard, Q>> level) {
        level.reset();
    }

    /*
     * Assume that level "0" should be larger than the buffer. The buffer
     * itself is index -1, which should return simply the buffer capacity.
     */
    inline size_t calc_level_record_capacity(level_index idx) {
        return m_buffer_size * pow(m_scale_factor, idx+1);
    }

    /*
     * Returns the number of records present on a specified level. 
     */
    inline size_t get_level_record_count(level_index idx) {
        return (m_levels[idx]) ? m_levels[idx]->get_record_count() : 0;
    }

    /*
     * Determines if a level can sustain a reconstruction with incoming_rec_cnt
     * additional records without exceeding its capacity.
     */
    inline bool can_reconstruct_with(level_index idx, size_t incoming_rec_cnt, state_vector &state) {
        if (idx >= state.size()) {
            return false;
        }

        if (L == LayoutPolicy::LEVELING) {
            return state[idx].reccnt + incoming_rec_cnt <= state[idx].reccap; 
        } else {
            return state[idx].shardcnt < state[idx].shardcap;
        }

        /* unreachable */
        assert(true);
    }
};

}