1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/*
* tests/vptree_tests.cpp
*
* Unit tests for VPTree (knn queries)
*
* Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu>
*
* Distributed under the Modified BSD License.
*
*/
#include <algorithm>
#include "include/testing.h"
#include "shard/VPTree.h"
#include "query/knn.h"
#include <check.h>
using namespace de;
typedef PRec R;
typedef VPTree<R> Shard;
typedef knn::Query<Shard> Q;
START_TEST(t_mbuffer_init)
{
size_t n= 24;
auto buffer = new MutableBuffer<PRec>(n/2, n);
for (int64_t i=0; i<n; i++) {
buffer->append({(uint64_t) i, (uint64_t) i});
}
Shard* shard = new Shard(buffer->get_buffer_view());
ck_assert_uint_eq(shard->get_record_count(), n);
delete buffer;
delete shard;
}
START_TEST(t_wss_init)
{
size_t n = 512;
auto mbuffer1 = create_test_mbuffer<R>(n);
auto mbuffer2 = create_test_mbuffer<R>(n);
auto mbuffer3 = create_test_mbuffer<R>(n);
auto shard1 = new Shard(mbuffer1->get_buffer_view());
auto shard2 = new Shard(mbuffer2->get_buffer_view());
auto shard3 = new Shard(mbuffer3->get_buffer_view());
std::vector<Shard *> shards = {shard1, shard2, shard3};
auto shard4 = new Shard(shards);
ck_assert_int_eq(shard4->get_record_count(), n * 3);
ck_assert_int_eq(shard4->get_tombstone_count(), 0);
delete mbuffer1;
delete mbuffer2;
delete mbuffer3;
delete shard1;
delete shard2;
delete shard3;
delete shard4;
}
START_TEST(t_point_lookup)
{
size_t n = 16;
auto buffer = create_sequential_mbuffer<R>(0, n);
auto wss = Shard(buffer->get_buffer_view());
{
auto bv = buffer->get_buffer_view();
for (size_t i=0; i<n; i++) {
PRec r;
auto rec = (bv.get(i));
r.data[0] = rec->rec.data[0];
r.data[1] = rec->rec.data[1];
auto result = wss.point_lookup(r);
ck_assert_ptr_nonnull(result);
ck_assert_int_eq(result->rec.data[0], r.data[0]);
ck_assert_int_eq(result->rec.data[1], r.data[1]);
}
}
delete buffer;
}
END_TEST
START_TEST(t_point_lookup_miss)
{
size_t n = 10000;
auto buffer = create_sequential_mbuffer<R>(0, n);
auto wss = Shard(buffer->get_buffer_view());
for (size_t i=n + 100; i<2*n; i++) {
PRec r;
r.data[0] = i;
r.data[1] = i;
auto result = wss.point_lookup(r);
ck_assert_ptr_null(result);
}
delete buffer;
}
START_TEST(t_buffer_query)
{
size_t n = 10000;
auto buffer = create_sequential_mbuffer<R>(0, n);
PRec target;
target.data[0] = 120;
target.data[1] = 120;
Q::Parameters p;
p.k = 10;
p.point = target;
{
auto bv = buffer->get_buffer_view();
auto query = Q::local_preproc_buffer(&bv, &p);
auto result = Q::local_query_buffer(query);
delete query;
std::sort(result.begin(), result.end());
size_t start = 120 - 5;
for (size_t i=0; i<result.size(); i++) {
ck_assert_int_eq(result[i].rec.data[0], start++);
}
}
delete buffer;
}
START_TEST(t_knn_query)
{
size_t n = 1000;
auto buffer = create_sequential_mbuffer<R>(0, n);
auto vptree = VPTree<PRec>(buffer->get_buffer_view());
Q::Parameters p;
for (size_t i=0; i<100; i++) {
p.k = rand() % 150;
p.point.data[0] = rand() % (n-p.k);
p.point.data[1] = p.point.data[0];
auto query = Q::local_preproc(&vptree, &p);
auto results = Q::local_query(&vptree, query);
delete query;
ck_assert_int_eq(results.size(), p.k);
std::sort(results.begin(), results.end());
if ((int64_t) (p.point.data[0] - p.k/2 - 1) < 0) {
ck_assert_int_eq(results[0].rec.data[0], 0);
} else {
ck_assert(results[0].rec.data[0] == (p.point.data[0] - p.k/2 - 1) ||
results[0].rec.data[0] == (p.point.data[0] - p.k/2) ||
results[0].rec.data[0] == (p.point.data[0] - p.k/2 + 1));
}
size_t start = results[0].rec.data[0];
for (size_t i=0; i<results.size(); i++) {
ck_assert_int_eq(results[i].rec.data[0], start++);
}
}
delete buffer;
}
Suite *unit_testing()
{
Suite *unit = suite_create("VPTree Shard Unit Testing");
TCase *create = tcase_create("de::VPTree constructor Testing");
tcase_add_test(create, t_mbuffer_init);
tcase_add_test(create, t_wss_init);
tcase_set_timeout(create, 100);
suite_add_tcase(unit, create);
TCase *lookup = tcase_create("de:VPTree:point_lookup Testing");
tcase_add_test(lookup, t_point_lookup);
tcase_add_test(lookup, t_point_lookup_miss);
suite_add_tcase(unit, lookup);
TCase *query = tcase_create("de:VPTree::VPTreeQuery Testing");
tcase_add_test(query, t_buffer_query);
tcase_add_test(query, t_knn_query);
suite_add_tcase(unit, query);
return unit;
}
int shard_unit_tests()
{
int failed = 0;
Suite *unit = unit_testing();
SRunner *unit_shardner = srunner_create(unit);
srunner_run_all(unit_shardner, CK_NORMAL);
failed = srunner_ntests_failed(unit_shardner);
srunner_free(unit_shardner);
return failed;
}
int main()
{
int unit_failed = shard_unit_tests();
return (unit_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}
|