1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/*
* include/framework/scheduling/FIFOScheduler.h
*
* Copyright (C) 2023-2025 Douglas B. Rumbaugh <drumbaugh@psu.edu>
*
* Distributed under the Modified BSD License.
*
* This scheduler runs just concurrently, using a standard FIFO queue to
* determine which jobs to run next. If more jobs are scheduled than there
* are available threads, the excess will stall until a thread becomes
* available and then run in the order they were received by the scheduler.
*/
#pragma once
#include "framework/scheduling/Task.h"
#include "framework/scheduling/statistics.h"
#include <chrono>
#include <condition_variable>
#include <thread>
#include "ctpl/ctpl.h"
#include "psu-ds/LockedPriorityQueue.h"
namespace de {
using namespace std::literals::chrono_literals;
class FIFOScheduler {
private:
static const size_t DEFAULT_MAX_THREADS = 8;
public:
FIFOScheduler(size_t memory_budget, size_t thread_cnt)
: m_memory_budget((memory_budget) ? memory_budget : UINT64_MAX),
m_thrd_cnt((thread_cnt) ? thread_cnt : DEFAULT_MAX_THREADS),
m_used_memory(0), m_used_thrds(0), m_shutdown(false) {
m_sched_thrd = std::thread(&FIFOScheduler::run, this);
m_thrd_pool.resize(m_thrd_cnt);
}
~FIFOScheduler() {
if (!m_shutdown.load()) {
shutdown();
}
m_sched_thrd.join();
m_flush_thread.join();
}
void schedule_job(std::function<void(void *)> job, size_t size, void *args,
size_t type = 0) {
size_t ts = m_counter.fetch_add(1);
if (type == 3) {
do_flush(Task(size, ts, job, args, type, &m_stats, &m_flush_lock, &m_cv));
return;
}
std::unique_lock<std::mutex> lk(m_cv_lock);
m_stats.job_queued(ts, type, size);
m_task_queue.push(Task(size, ts, job, args, type, &m_stats, nullptr, &m_cv));
m_cv.notify_all();
}
void shutdown() {
m_shutdown.store(true);
m_thrd_pool.stop(true);
m_cv.notify_all();
}
void print_statistics() { m_stats.print_statistics(); }
private:
psudb::LockedPriorityQueue<Task> m_task_queue;
[[maybe_unused]] size_t m_memory_budget;
size_t m_thrd_cnt;
std::atomic<size_t> m_counter;
std::mutex m_cv_lock;
std::condition_variable m_cv;
std::mutex m_queue_lock;
std::mutex m_flush_lock;
std::thread m_flush_thread;
std::thread m_sched_thrd;
ctpl::thread_pool m_thrd_pool;
std::atomic<size_t> m_used_memory;
std::atomic<size_t> m_used_thrds;
std::atomic<bool> m_shutdown;
SchedulerStatistics m_stats;
void schedule_next() {
auto lk = std::unique_lock<std::mutex>(m_queue_lock);
assert(m_task_queue.size() > 0);
auto t = m_task_queue.pop();
m_stats.job_scheduled(t.m_timestamp);
m_thrd_pool.push(t);
}
void run() {
do {
std::unique_lock<std::mutex> cv_lock(m_cv_lock);
m_cv.wait(cv_lock);
while (m_task_queue.size() > 0 && m_thrd_pool.n_idle() > 0) {
schedule_next();
}
} while (!m_shutdown.load());
}
void do_flush(Task task) {
m_flush_lock.lock();
if (m_flush_thread.joinable()) {
m_flush_thread.join();
}
m_flush_thread = std::thread(task, 0);
}
};
} // namespace de
|