1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* tests/wirs_tests.cpp
*
* Unit tests for WIRS (Augmented B+Tree) shard
*
* Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu>
* Dong Xie <dongx@psu.edu>
*
* All rights reserved. Published under the Modified BSD License.
*
*/
#include "shard/WIRS.h"
#include "framework/InternalLevel.h"
#include "util/bf_config.h"
#include "testing.h"
#include <check.h>
using namespace de;
typedef WIRS<uint64_t, uint32_t, uint64_t> Shard;
START_TEST(t_mbuffer_init)
{
auto mem_table = new WeightedMBuffer(1024, true, 1024, g_rng);
for (uint64_t i = 512; i > 0; i--) {
uint32_t v = i;
mem_table->append(i, v);
}
for (uint64_t i = 1; i <= 256; ++i) {
uint32_t v = i;
mem_table->append(i, v, 1.0, true);
}
for (uint64_t i = 257; i <= 512; ++i) {
uint32_t v = i + 1;
mem_table->append(i, v);
}
BloomFilter* bf = new BloomFilter(BF_FPR, mem_table->get_tombstone_count(), BF_HASH_FUNCS, g_rng);
Shard* shard = new Shard(mem_table, bf, false);
ck_assert_uint_eq(shard->get_record_count(), 512);
delete bf;
delete mem_table;
delete shard;
}
START_TEST(t_wirs_init)
{
size_t n = 512;
auto mbuffer1 = create_test_mbuffer<uint64_t, uint32_t, uint64_t>(n);
auto mbuffer2 = create_test_mbuffer<uint64_t, uint32_t, uint64_t>(n);
auto mbuffer3 = create_test_mbuffer<uint64_t, uint32_t, uint64_t>(n);
BloomFilter* bf1 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
BloomFilter* bf2 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
BloomFilter* bf3 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
auto shard1 = new Shard(mbuffer1, bf1, false);
auto shard2 = new Shard(mbuffer2, bf2, false);
auto shard3 = new Shard(mbuffer3, bf3, false);
BloomFilter* bf4 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
Shard* shards[3] = {shard1, shard2, shard3};
auto shard4 = new Shard(shards, 3, bf4, false);
ck_assert_int_eq(shard4->get_record_count(), n * 3);
ck_assert_int_eq(shard4->get_tombstone_count(), 0);
size_t total_cnt = 0;
size_t shard1_idx = 0;
size_t shard2_idx = 0;
size_t shard3_idx = 0;
for (size_t i = 0; i < shard4->get_record_count(); ++i) {
auto rec1 = shard1->get_record_at(shard1_idx);
auto rec2 = shard2->get_record_at(shard2_idx);
auto rec3 = shard3->get_record_at(shard3_idx);
auto cur_rec = shard4->get_record_at(i);
if (shard1_idx < n && cur_rec->match(rec1)) {
++shard1_idx;
} else if (shard2_idx < n && cur_rec->match(rec2)) {
++shard2_idx;
} else if (shard3_idx < n && cur_rec->match(rec3)) {
++shard3_idx;
} else {
assert(false);
}
}
delete mbuffer1;
delete mbuffer2;
delete mbuffer3;
delete bf1;
delete shard1;
delete bf2;
delete shard2;
delete bf3;
delete shard3;
delete bf4;
delete shard4;
}
START_TEST(t_get_lower_bound_index)
{
size_t n = 10000;
auto mbuffer = create_double_seq_mbuffer<uint64_t, uint32_t, uint64_t>(n);
ck_assert_ptr_nonnull(mbuffer);
BloomFilter* bf = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
Shard* shard = new Shard(mbuffer, bf, false);
ck_assert_int_eq(shard->get_record_count(), n);
ck_assert_int_eq(shard->get_tombstone_count(), 0);
auto tbl_records = mbuffer->sorted_output();
for (size_t i=0; i<n; i++) {
const WeightedRec *tbl_rec = mbuffer->get_record_at(i);
auto pos = shard->get_lower_bound(tbl_rec->key);
ck_assert_int_eq(shard->get_record_at(pos)->key, tbl_rec->key);
ck_assert_int_le(pos, i);
}
delete mbuffer;
delete bf;
delete shard;
}
START_TEST(t_full_cancelation)
{
size_t n = 100;
auto buffer = create_double_seq_mbuffer<uint64_t, uint32_t, uint64_t>(n, false);
auto buffer_ts = create_double_seq_mbuffer<uint64_t, uint32_t, uint64_t>(n, true);
BloomFilter* bf1 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
BloomFilter* bf2 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
BloomFilter* bf3 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
Shard* shard = new Shard(buffer, bf1, false);
Shard* shard_ts = new Shard(buffer_ts, bf2, false);
ck_assert_int_eq(shard->get_record_count(), n);
ck_assert_int_eq(shard->get_tombstone_count(), 0);
ck_assert_int_eq(shard_ts->get_record_count(), n);
ck_assert_int_eq(shard_ts->get_tombstone_count(), n);
Shard* shards[] = {shard, shard_ts};
Shard* merged = new Shard(shards, 2, bf3, false);
ck_assert_int_eq(merged->get_tombstone_count(), 0);
ck_assert_int_eq(merged->get_record_count(), 0);
delete buffer;
delete buffer_ts;
delete bf1;
delete bf2;
delete bf3;
delete shard;
delete shard_ts;
delete merged;
}
END_TEST
START_TEST(t_weighted_sampling)
{
size_t n=1000;
auto buffer = create_weighted_mbuffer<uint64_t, uint32_t, uint64_t>(n);
BloomFilter* bf = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
Shard* shard = new Shard(buffer, bf, false);
uint64_t lower_key = 0;
uint64_t upper_key = 5;
size_t k = 1000;
std::vector<WeightedRec> results;
results.reserve(k);
size_t cnt[3] = {0};
for (size_t i=0; i<1000; i++) {
auto state = shard->get_sample_shard_state(lower_key, upper_key);
shard->get_samples(state, results, lower_key, upper_key, k, g_rng);
for (size_t j=0; j<k; j++) {
cnt[results[j].key - 1]++;
}
WIRS<uint64_t, uint32_t, uint64_t>::delete_state(state);
}
ck_assert(roughly_equal(cnt[0] / 1000, (double) k/4.0, k, .05));
ck_assert(roughly_equal(cnt[1] / 1000, (double) k/4.0, k, .05));
ck_assert(roughly_equal(cnt[2] / 1000, (double) k/2.0, k, .05));
delete shard;
delete bf;
delete buffer;
}
END_TEST
START_TEST(t_tombstone_check)
{
size_t cnt = 1024;
size_t ts_cnt = 256;
auto buffer = new WeightedMBuffer(cnt + ts_cnt, true, ts_cnt, g_rng);
std::vector<std::pair<uint64_t, uint32_t>> tombstones;
uint64_t key = 1000;
uint32_t val = 101;
for (size_t i = 0; i < cnt; i++) {
buffer->append(key, val);
key++;
val++;
}
// ensure that the key range doesn't overlap, so nothing
// gets cancelled.
for (size_t i=0; i<ts_cnt; i++) {
tombstones.push_back({i, i});
}
for (size_t i=0; i<ts_cnt; i++) {
buffer->append(tombstones[i].first, tombstones[i].second, 1.0, true);
}
BloomFilter* bf1 = new BloomFilter(100, BF_HASH_FUNCS, g_rng);
auto shard = new Shard(buffer, bf1, false);
for (size_t i=0; i<tombstones.size(); i++) {
ck_assert(shard->check_tombstone(tombstones[i].first, tombstones[i].second));
ck_assert_int_eq(shard->get_rejection_count(), i+1);
}
delete shard;
delete buffer;
delete bf1;
}
END_TEST
Suite *unit_testing()
{
Suite *unit = suite_create("WIRS Shard Unit Testing");
TCase *create = tcase_create("de::WIRS constructor Testing");
tcase_add_test(create, t_mbuffer_init);
tcase_add_test(create, t_wirs_init);
tcase_set_timeout(create, 100);
suite_add_tcase(unit, create);
TCase *bounds = tcase_create("de:WIRS::get_{lower,upper}_bound Testing");
tcase_add_test(bounds, t_get_lower_bound_index);
tcase_set_timeout(bounds, 100);
suite_add_tcase(unit, bounds);
TCase *tombstone = tcase_create("de:WIRS::tombstone cancellation Testing");
tcase_add_test(tombstone, t_full_cancelation);
suite_add_tcase(unit, tombstone);
TCase *sampling = tcase_create("de:WIRS::sampling Testing");
tcase_add_test(sampling, t_weighted_sampling);
suite_add_tcase(unit, sampling);
TCase *check_ts = tcase_create("de::WIRS::check_tombstone Testing");
tcase_add_test(check_ts, t_tombstone_check);
suite_add_tcase(unit, check_ts);
return unit;
}
int shard_unit_tests()
{
int failed = 0;
Suite *unit = unit_testing();
SRunner *unit_shardner = srunner_create(unit);
srunner_run_all(unit_shardner, CK_NORMAL);
failed = srunner_ntests_failed(unit_shardner);
srunner_free(unit_shardner);
return failed;
}
int main()
{
int unit_failed = shard_unit_tests();
return (unit_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}
|