1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/*
* tests/rangequery_tests.cpp
*
* Unit tests for Range Queries across several different
* shards
*
* Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu>
* Dong Xie <dongx@psu.edu>
*
* Distributed under the Modified BSD License.
*
*/
#include "shard/ISAMTree.h"
#include "query/rangequery.h"
#include "include/testing.h"
#include <check.h>
using namespace de;
typedef ISAMTree<Rec> Shard;
START_TEST(t_range_query)
{
auto buffer = create_sequential_mbuffer<Rec>(100, 1000);
auto shard = Shard(buffer->get_buffer_view());
rq::Parms<Rec> parms;
parms.lower_bound = 300;
parms.upper_bound = 500;
auto state = rq::Query<Shard, Rec>::get_query_state(&shard, &parms);
auto result = rq::Query<Shard, Rec>::query(&shard, state, &parms);
rq::Query<Shard, Rec>::delete_query_state(state);
ck_assert_int_eq(result.size(), parms.upper_bound - parms.lower_bound + 1);
for (size_t i=0; i<result.size(); i++) {
ck_assert_int_le(result[i].rec.key, parms.upper_bound);
ck_assert_int_ge(result[i].rec.key, parms.lower_bound);
}
delete buffer;
}
END_TEST
START_TEST(t_buffer_range_query)
{
auto buffer = create_sequential_mbuffer<Rec>(100, 1000);
rq::Parms<Rec> parms;
parms.lower_bound = 300;
parms.upper_bound = 500;
auto state = rq::Query<Shard, Rec>::get_buffer_query_state(buffer->get_buffer_view(), &parms);
auto result = rq::Query<Shard, Rec>::buffer_query(state, &parms);
rq::Query<Shard, Rec>::delete_buffer_query_state(state);
ck_assert_int_eq(result.size(), parms.upper_bound - parms.lower_bound + 1);
for (size_t i=0; i<result.size(); i++) {
ck_assert_int_le(result[i].rec.key, parms.upper_bound);
ck_assert_int_ge(result[i].rec.key, parms.lower_bound);
}
delete buffer;
}
END_TEST
START_TEST(t_range_query_merge)
{
auto buffer1 = create_sequential_mbuffer<Rec>(100, 200);
auto buffer2 = create_sequential_mbuffer<Rec>(400, 1000);
auto shard1 = Shard(buffer1->get_buffer_view());
auto shard2 = Shard(buffer2->get_buffer_view());
rq::Parms<Rec> parms;
parms.lower_bound = 150;
parms.upper_bound = 500;
size_t result_size = parms.upper_bound - parms.lower_bound + 1 - 200;
auto state1 = rq::Query<Shard, Rec>::get_query_state(&shard1, &parms);
auto state2 = rq::Query<Shard, Rec>::get_query_state(&shard2, &parms);
std::vector<std::vector<de::Wrapped<Rec>>> results(2);
results[0] = rq::Query<Shard, Rec>::query(&shard1, state1, &parms);
results[1] = rq::Query<Shard, Rec>::query(&shard2, state2, &parms);
rq::Query<Shard, Rec>::delete_query_state(state1);
rq::Query<Shard, Rec>::delete_query_state(state2);
ck_assert_int_eq(results[0].size() + results[1].size(), result_size);
std::vector<std::vector<Wrapped<Rec>>> proc_results;
for (size_t j=0; j<results.size(); j++) {
proc_results.emplace_back(std::vector<Wrapped<Rec>>());
for (size_t i=0; i<results[j].size(); i++) {
proc_results[j].emplace_back(results[j][i]);
}
}
auto result = rq::Query<Shard, Rec>::merge(proc_results, nullptr);
std::sort(result.begin(), result.end());
ck_assert_int_eq(result.size(), result_size);
auto key = parms.lower_bound;
for (size_t i=0; i<result.size(); i++) {
ck_assert_int_eq(key++, result[i].key);
if (key == 200) {
key = 400;
}
}
delete buffer1;
delete buffer2;
}
END_TEST
START_TEST(t_lower_bound)
{
auto buffer1 = create_sequential_mbuffer<Rec>(100, 200);
auto buffer2 = create_sequential_mbuffer<Rec>(400, 1000);
auto shard1 = Shard(buffer1->get_buffer_view());
auto shard2 = Shard(buffer2->get_buffer_view());
std::vector<Shard *> shards = {&shard1, &shard2};
auto merged = Shard(shards);
for (size_t i=100; i<1000; i++) {
Rec r;
r.key = i;
r.value = i;
auto idx = merged.get_lower_bound(i);
assert(idx < merged.get_record_count());
auto res = merged.get_record_at(idx);
if (i >=200 && i <400) {
ck_assert_int_lt(res->rec.key, i);
} else {
ck_assert_int_eq(res->rec.key, i);
}
}
delete buffer1;
delete buffer2;
}
END_TEST
Suite *unit_testing()
{
Suite *unit = suite_create("Range Query Unit Testing");
TCase *range_query = tcase_create("de:PGM::range_query Testing");
tcase_add_test(range_query, t_range_query);
tcase_add_test(range_query, t_buffer_range_query);
tcase_add_test(range_query, t_range_query_merge);
suite_add_tcase(unit, range_query);
return unit;
}
int shard_unit_tests()
{
int failed = 0;
Suite *unit = unit_testing();
SRunner *unit_shardner = srunner_create(unit);
srunner_run_all(unit_shardner, CK_NORMAL);
failed = srunner_ntests_failed(unit_shardner);
srunner_free(unit_shardner);
return failed;
}
int main()
{
int unit_failed = shard_unit_tests();
return (unit_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}
|