1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/*
* tests/include/shard_standard.h
*
* Standardized unit tests for Shard objects
*
* Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu>
*
* Distributed under the Modified BSD License.
*
* WARNING: This file must be included in the main unit test set
* after the definition of an appropriate Shard and R
* type. In particular, R needs to implement the key-value
* pair interface. For other types of record, you'll need to
* use a different set of unit tests.
*/
#pragma once
/*
* Uncomment these lines temporarily to remove errors in this file
* temporarily for development purposes. They should be removed prior
* to building, to ensure no duplicate definitions. These includes/defines
* should be included in the source file that includes this one, above the
* include statement.
*/
/*
#include "shard/ISAMTree.h"
#include "shard/ISAMTree.h"
#include "testing.h"
#include <check.h>
using namespace de;
typedef Rec R;
typedef ISAMTree<R> Shard;
*/
START_TEST(t_mbuffer_init)
{
auto buffer = new MutableBuffer<R>(512, 1024);
for (uint64_t i = 512; i > 0; i--) {
uint32_t v = i;
buffer->append({i, v});
}
for (uint64_t i = 1; i <= 256; ++i) {
uint32_t v = i;
buffer->append({i, v}, true);
}
for (uint64_t i = 257; i <= 512; ++i) {
uint32_t v = i + 1;
buffer->append({i, v});
}
Shard* shard = new Shard(buffer->get_buffer_view());
ck_assert_uint_eq(shard->get_record_count(), 512);
delete buffer;
delete shard;
}
START_TEST(t_shard_init)
{
size_t n = 512;
auto mbuffer1 = create_test_mbuffer<R>(n);
auto mbuffer2 = create_test_mbuffer<R>(n);
auto mbuffer3 = create_test_mbuffer<R>(n);
auto shard1 = new Shard(mbuffer1->get_buffer_view());
auto shard2 = new Shard(mbuffer2->get_buffer_view());
auto shard3 = new Shard(mbuffer3->get_buffer_view());
std::vector<Shard*> shards = {shard1, shard2, shard3};
auto shard4 = new Shard(shards);
ck_assert_int_eq(shard4->get_record_count(), n * 3);
ck_assert_int_eq(shard4->get_tombstone_count(), 0);
size_t shard1_idx = 0;
size_t shard2_idx = 0;
size_t shard3_idx = 0;
for (size_t i = 0; i < shard4->get_record_count(); ++i) {
auto rec1 = shard1->get_record_at(shard1_idx);
auto rec2 = shard2->get_record_at(shard2_idx);
auto rec3 = shard3->get_record_at(shard3_idx);
auto cur_rec = shard4->get_record_at(i);
if (shard1_idx < n && cur_rec->rec == rec1->rec) {
++shard1_idx;
} else if (shard2_idx < n && cur_rec->rec == rec2->rec) {
++shard2_idx;
} else if (shard3_idx < n && cur_rec->rec == rec3->rec) {
++shard3_idx;
} else {
assert(false);
}
}
delete mbuffer1;
delete mbuffer2;
delete mbuffer3;
delete shard1;
delete shard2;
delete shard3;
delete shard4;
}
START_TEST(t_full_cancelation)
{
size_t n = 100;
auto buffer = create_double_seq_mbuffer<R>(n, false);
auto buffer_ts = create_double_seq_mbuffer<R>(n, true);
Shard* shard = new Shard(buffer->get_buffer_view());
Shard* shard_ts = new Shard(buffer_ts->get_buffer_view());
ck_assert_int_eq(shard->get_record_count(), n);
ck_assert_int_eq(shard->get_tombstone_count(), 0);
ck_assert_int_eq(shard_ts->get_record_count(), n);
ck_assert_int_eq(shard_ts->get_tombstone_count(), n);
std::vector<Shard *> shards = {shard, shard_ts};
Shard* merged = new Shard(shards);
ck_assert_int_eq(merged->get_tombstone_count(), 0);
ck_assert_int_eq(merged->get_record_count(), 0);
delete buffer;
delete buffer_ts;
delete shard;
delete shard_ts;
delete merged;
}
END_TEST
START_TEST(t_point_lookup)
{
size_t n = 10000;
auto buffer = create_double_seq_mbuffer<R>(n, false);
auto isam = Shard(buffer->get_buffer_view());
{
auto view = buffer->get_buffer_view();
for (size_t i=0; i<n; i++) {
auto rec = view.get(i);
R r = {rec->rec.key, rec->rec.value};
auto result = isam.point_lookup(r);
ck_assert_ptr_nonnull(result);
ck_assert_int_eq(result->rec.key, r.key);
ck_assert_int_eq(result->rec.value, r.value);
}
}
delete buffer;
}
END_TEST
START_TEST(t_point_lookup_miss)
{
size_t n = 10000;
auto buffer = create_double_seq_mbuffer<R>(n, false);
auto isam = Shard(buffer->get_buffer_view());
for (uint32_t i=n + 100; i<2*n; i++) {
R r = R{i, i};
auto result = isam.point_lookup(r);
ck_assert_ptr_null(result);
}
delete buffer;
}
static void inject_shard_tests(Suite *suite) {
TCase *create = tcase_create("Shard constructor Testing");
tcase_add_test(create, t_mbuffer_init);
tcase_add_test(create, t_shard_init);
tcase_set_timeout(create, 100);
suite_add_tcase(suite, create);
TCase *tombstone = tcase_create("Shard tombstone cancellation Testing");
tcase_add_test(tombstone, t_full_cancelation);
suite_add_tcase(suite, tombstone);
TCase *pointlookup = tcase_create("Shard point lookup Testing");
tcase_add_test(pointlookup, t_point_lookup);
tcase_add_test(pointlookup, t_point_lookup_miss);
suite_add_tcase(suite, pointlookup);
}
|