1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*
* include/shard/VPTree.h
*
* Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu>
*
* All outsides reserved. Published under the Modified BSD License.
*
*/
#pragma once
#include <vector>
#include <cassert>
#include <queue>
#include <memory>
#include <concepts>
#include <map>
#include "ds/PriorityQueue.h"
#include "util/Cursor.h"
#include "ds/BloomFilter.h"
#include "util/bf_config.h"
#include "framework/MutableBuffer.h"
#include "framework/RecordInterface.h"
#include "framework/ShardInterface.h"
#include "framework/QueryInterface.h"
namespace de {
thread_local size_t wss_cancelations = 0;
template <NDRecordInterface R>
struct KNNQueryParms {
R point;
size_t k;
};
template <NDRecordInterface R>
class KNNQuery;
template <NDRecordInterface R>
struct KNNState {
size_t k;
KNNState() {
k = 0;
}
};
template <NDRecordInterface R>
struct KNNBufferState {
size_t cutoff;
size_t sample_size;
Alias* alias;
decltype(R::weight) max_weight;
decltype(R::weight) total_weight;
~KNNBufferState() {
delete alias;
}
};
template <NDRecordInterface R>
class VPTree {
private:
struct vpnode {
size_t idx = 0;
double radius = 0;
vpnode *inside = nullptr;
vpnode *outside = nullptr;
~vpnode() {
delete inside;
delete outside;
}
};
public:
friend class KNNQuery<R>;
VPTree(MutableBuffer<R>* buffer)
: m_reccnt(0), m_tombstone_cnt(0), m_root(nullptr), m_node_cnt(0) {
size_t alloc_size = (buffer->get_record_count() * sizeof(Wrapped<R>)) + (CACHELINE_SIZE - (buffer->get_record_count() * sizeof(Wrapped<R>)) % CACHELINE_SIZE);
assert(alloc_size % CACHELINE_SIZE == 0);
m_data = (Wrapped<R>*)std::aligned_alloc(CACHELINE_SIZE, alloc_size);
size_t offset = 0;
m_reccnt = 0;
// FIXME: will eventually need to figure out tombstones
// this one will likely require the multi-pass
// approach, as otherwise we'll need to sort the
// records repeatedly on each reconstruction.
for (size_t i=0; i<buffer->get_record_count(); i++) {
auto rec = buffer->get_data() + i;
if (rec->is_deleted()) {
continue;
}
rec->header &= 3;
m_data[m_reccnt++] = *rec;
}
if (m_reccnt > 0) {
m_root = build_vptree();
build_map();
}
}
VPTree(VPTree** shards, size_t len)
: m_reccnt(0), m_tombstone_cnt(0), m_root(nullptr), m_node_cnt(0) {
size_t attemp_reccnt = 0;
for (size_t i=0; i<len; i++) {
attemp_reccnt += shards[i]->get_record_count();
}
size_t alloc_size = (attemp_reccnt * sizeof(Wrapped<R>)) + (CACHELINE_SIZE - (attemp_reccnt * sizeof(Wrapped<R>)) % CACHELINE_SIZE);
assert(alloc_size % CACHELINE_SIZE == 0);
m_data = (Wrapped<R>*)std::aligned_alloc(CACHELINE_SIZE, alloc_size);
// FIXME: will eventually need to figure out tombstones
// this one will likely require the multi-pass
// approach, as otherwise we'll need to sort the
// records repeatedly on each reconstruction.
for (size_t i=0; i<len; i++) {
for (size_t j=0; j<shards[i]->get_record_count(); j++) {
if (shards[i]->get_record_at(j)->is_deleted()) {
continue;
}
m_data[m_reccnt++] = *shards[i]->get_record_at(j);
}
}
if (m_reccnt > 0) {
m_root = build_vptree();
build_map();
}
}
~VPTree() {
if (m_data) free(m_data);
if (m_root) delete m_root;
}
Wrapped<R> *point_lookup(const R &rec, bool filter=false) {
auto idx = m_lookup_map.find(rec);
if (idx == m_lookup_map.end()) {
return nullptr;
}
return m_data + idx->second;
}
Wrapped<R>* get_data() const {
return m_data;
}
size_t get_record_count() const {
return m_reccnt;
}
size_t get_tombstone_count() const {
return m_tombstone_cnt;
}
const Wrapped<R>* get_record_at(size_t idx) const {
if (idx >= m_reccnt) return nullptr;
return m_data + idx;
}
size_t get_memory_usage() {
return m_node_cnt * sizeof(vpnode);
}
private:
vpnode *build_vptree() {
assert(m_reccnt > 0);
size_t lower = 0;
size_t upper = m_reccnt - 1;
auto rng = gsl_rng_alloc(gsl_rng_mt19937);
auto n = build_subtree(lower, upper, rng);
gsl_rng_free(rng);
return n;
}
void build_map() {
for (size_t i=0; i<m_reccnt; i++) {
m_lookup_map.insert({m_data[i].rec, i});
}
}
vpnode *build_subtree(size_t start, size_t stop, gsl_rng *rng) {
if (start >= stop) {
return nullptr;
}
// select a random element to partition based on, and swap
// it to the front of the sub-array
auto i = start + gsl_rng_uniform_int(rng, stop - start);
swap(start, i);
// partition elements based on their distance from the start,
// with those elements with distance falling below the median
// distance going into the left sub-array and those above
// the median in the right. This is easily done using QuickSelect.
auto mid = ((start+1) + stop) / 2;
quickselect(start + 1, stop, mid, m_data[start], rng);
// Create a new node based on this partitioning
vpnode *node = new vpnode();
// store the radius of the circle used for partitioning the
// node.
node->idx = start;
node->radius = m_data[start].rec.calc_distance(m_data[mid].rec);
// recursively construct the left and right subtrees
node->inside = build_subtree(start + 1, mid - 1, rng);
node->outside = build_subtree(mid, stop, rng);
m_node_cnt++;
return node;
}
void quickselect(size_t start, size_t stop, size_t k, Wrapped<R> p, gsl_rng *rng) {
if (start == stop) return;
auto pivot = partition(start, stop, p, rng);
if (k < pivot) {
quickselect(start, pivot - 1, k, p, rng);
} else if (k > pivot) {
quickselect(pivot + 1, stop, k, p, rng);
}
}
size_t partition(size_t start, size_t stop, Wrapped<R> p, gsl_rng *rng) {
auto pivot = start + gsl_rng_uniform_int(rng, stop - start);
double pivot_dist = p.rec.calc_distance(m_data[pivot].rec);
swap(pivot, stop);
size_t j = start;
for (size_t i=start; i<stop; i++) {
if (p.rec.calc_distance(m_data[i].rec) < pivot_dist) {
swap(j, i);
j++;
}
}
swap(j, stop);
return j;
}
void swap(size_t idx1, size_t idx2) {
Wrapped<R> tmp = m_data[idx1];
m_data[idx1] = m_data[idx2];
m_data[idx2] = tmp;
}
Wrapped<R>* m_data;
std::unordered_map<R, size_t, RecordHash<R>> m_lookup_map;
size_t m_reccnt;
size_t m_tombstone_cnt;
size_t m_node_cnt;
vpnode *m_root;
};
template <NDRecordInterface R>
class KNNQuery {
public:
static void *get_query_state(VPTree<R> *wss, void *parms) {
return nullptr;
}
static void* get_buffer_query_state(MutableBuffer<R> *buffer, void *parms) {
return nullptr;
}
static void process_query_states(void *query_parms, std::vector<void*> shard_states, void *buff_state) {
}
static std::vector<Wrapped<R>> query(VPTree<R> *wss, void *q_state, void *parms) {
}
static std::vector<Wrapped<R>> buffer_query(MutableBuffer<R> *buffer, void *state, void *parms) {
}
static std::vector<R> merge(std::vector<std::vector<R>> &results) {
}
static void delete_query_state(void *state) {
auto s = (KNNState<R> *) state;
delete s;
}
static void delete_buffer_query_state(void *state) {
auto s = (KNNBufferState<R> *) state;
delete s;
}
};
}
|