1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/*
* include/shard/PGM.h
*
* Copyright (C) 2023 Douglas B. Rumbaugh <drumbaugh@psu.edu>
*
* All rights reserved. Published under the Modified BSD License.
*
*/
#pragma once
#include <vector>
#include <cassert>
#include <queue>
#include <memory>
#include <concepts>
#include "framework/ShardRequirements.h"
#include "pgm/pgm_index.hpp"
#include "psu-ds/PriorityQueue.h"
#include "util/Cursor.h"
#include "psu-ds/BloomFilter.h"
#include "util/bf_config.h"
using psudb::CACHELINE_SIZE;
using psudb::BloomFilter;
using psudb::PriorityQueue;
using psudb::queue_record;
using psudb::Alias;
namespace de {
template <RecordInterface R, size_t epsilon=128>
class PGM {
private:
typedef decltype(R::key) K;
typedef decltype(R::value) V;
public:
PGM(MutableBuffer<R>* buffer)
: m_reccnt(0), m_tombstone_cnt(0) {
m_alloc_size = (buffer->get_record_count() * sizeof(Wrapped<R>)) + (CACHELINE_SIZE - (buffer->get_record_count() * sizeof(Wrapped<R>)) % CACHELINE_SIZE);
assert(m_alloc_size % CACHELINE_SIZE == 0);
m_data = (Wrapped<R>*)std::aligned_alloc(CACHELINE_SIZE, m_alloc_size);
std::vector<K> keys;
size_t offset = 0;
m_reccnt = 0;
auto base = buffer->get_data();
auto stop = base + buffer->get_record_count();
std::sort(base, stop, std::less<Wrapped<R>>());
K min_key = base->rec.key;
K max_key = (stop - 1)->rec.key;
while (base < stop) {
if (!(base->is_tombstone()) && (base + 1) < stop) {
if (base->rec == (base + 1)->rec && (base + 1)->is_tombstone()) {
base += 2;
continue;
}
} else if (base->is_deleted()) {
base += 1;
continue;
}
// FIXME: this shouldn't be necessary, but the tagged record
// bypass doesn't seem to be working on this code-path, so this
// ensures that tagged records from the buffer are able to be
// dropped, eventually. It should only need to be &= 1
base->header &= 3;
m_data[m_reccnt++] = *base;
keys.emplace_back(base->rec.key);
base++;
}
if (m_reccnt > 0) {
m_pgm = pgm::PGMIndex<K, epsilon>(keys);
}
}
PGM(PGM** shards, size_t len)
: m_reccnt(0), m_tombstone_cnt(0) {
std::vector<Cursor<Wrapped<R>>> cursors;
cursors.reserve(len);
PriorityQueue<Wrapped<R>> pq(len);
size_t attemp_reccnt = 0;
size_t tombstone_count = 0;
for (size_t i = 0; i < len; ++i) {
if (shards[i]) {
auto base = shards[i]->get_data();
cursors.emplace_back(Cursor{base, base + shards[i]->get_record_count(), 0, shards[i]->get_record_count()});
attemp_reccnt += shards[i]->get_record_count();
tombstone_count += shards[i]->get_tombstone_count();
pq.push(cursors[i].ptr, i);
} else {
cursors.emplace_back(Cursor<Wrapped<R>>{nullptr, nullptr, 0, 0});
}
}
m_alloc_size = (attemp_reccnt * sizeof(Wrapped<R>)) + (CACHELINE_SIZE - (attemp_reccnt * sizeof(Wrapped<R>)) % CACHELINE_SIZE);
assert(m_alloc_size % CACHELINE_SIZE == 0);
m_data = (Wrapped<R>*)std::aligned_alloc(CACHELINE_SIZE, m_alloc_size);
std::vector<K> keys;
while (pq.size()) {
auto now = pq.peek();
auto next = pq.size() > 1 ? pq.peek(1) : queue_record<Wrapped<R>>{nullptr, 0};
if (!now.data->is_tombstone() && next.data != nullptr &&
now.data->rec == next.data->rec && next.data->is_tombstone()) {
pq.pop(); pq.pop();
auto& cursor1 = cursors[now.version];
auto& cursor2 = cursors[next.version];
if (advance_cursor<Wrapped<R>>(cursor1)) pq.push(cursor1.ptr, now.version);
if (advance_cursor<Wrapped<R>>(cursor2)) pq.push(cursor2.ptr, next.version);
} else {
auto& cursor = cursors[now.version];
if (!cursor.ptr->is_deleted()) {
m_data[m_reccnt++] = *cursor.ptr;
keys.emplace_back(cursor.ptr->rec.key);
}
pq.pop();
if (advance_cursor<Wrapped<R>>(cursor)) pq.push(cursor.ptr, now.version);
}
}
if (m_reccnt > 0) {
m_pgm = pgm::PGMIndex<K, epsilon>(keys);
}
}
~PGM() {
if (m_data) free(m_data);
}
Wrapped<R> *point_lookup(const R &rec, bool filter=false) {
size_t idx = get_lower_bound(rec.key);
if (idx >= m_reccnt) {
return nullptr;
}
while (idx < m_reccnt && m_data[idx].rec < rec) ++idx;
if (m_data[idx].rec == rec) {
return m_data + idx;
}
return nullptr;
}
Wrapped<R>* get_data() const {
return m_data;
}
size_t get_record_count() const {
return m_reccnt;
}
size_t get_tombstone_count() const {
return m_tombstone_cnt;
}
const Wrapped<R>* get_record_at(size_t idx) const {
if (idx >= m_reccnt) return nullptr;
return m_data + idx;
}
size_t get_memory_usage() {
return m_pgm.size_in_bytes() + m_alloc_size;
}
size_t get_aux_memory_usage() {
return 0;
}
size_t get_lower_bound(const K& key) const {
auto bound = m_pgm.search(key);
size_t idx = bound.lo;
if (idx >= m_reccnt) {
return m_reccnt;
}
// If the region to search is less than some pre-specified
// amount, perform a linear scan to locate the record.
if (bound.hi - bound.lo < 256) {
while (idx < bound.hi && m_data[idx].rec.key < key) {
idx++;
}
} else {
// Otherwise, perform a binary search
idx = bound.lo;
size_t max = bound.hi;
while (idx < max) {
size_t mid = (idx + max) / 2;
if (key > m_data[mid].rec.key) {
idx = mid + 1;
} else {
max = mid;
}
}
}
if (m_data[idx].rec.key > key && idx > 0 && m_data[idx-1].rec.key <= key) {
return idx-1;
}
return (m_data[idx].rec.key >= key) ? idx : m_reccnt;
}
private:
Wrapped<R>* m_data;
size_t m_reccnt;
size_t m_tombstone_cnt;
size_t m_alloc_size;
K m_max_key;
K m_min_key;
pgm::PGMIndex<K, epsilon> m_pgm;
};
}
|