1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/*
* include/shard/MemISAM.h
*
* Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu>
* Dong Xie <dongx@psu.edu>
*
* All rights reserved. Published under the Modified BSD License.
*
*/
#pragma once
#include <vector>
#include <cassert>
#include <queue>
#include <memory>
#include "framework/MutableBuffer.h"
#include "util/bf_config.h"
#include "ds/PriorityQueue.h"
#include "util/Cursor.h"
#include "util/timer.h"
namespace de {
thread_local size_t mrun_cancelations = 0;
template <RecordInterface R>
struct irs_query_parms {
decltype(R::key) lower_bound;
decltype(R::key) upper_bound;
size_t sample_size;
gsl_rng *rng;
};
template <RecordInterface R, bool Rejection>
class IRSQuery;
template <RecordInterface R>
struct IRSState {
size_t lower_bound;
size_t upper_bound;
size_t sample_size;
};
template <RecordInterface R>
struct IRSBufferState {
size_t cutoff;
std::vector<Wrapped<R>> records;
size_t sample_size;
};
template <RecordInterface R>
class MemISAM {
private:
friend class InternalLevel;
friend class IRSQuery<R, true>;
friend class IRSQuery<R, false>;
typedef decltype(R::key) K;
typedef decltype(R::value) V;
constexpr static size_t inmem_isam_node_size = 256;
constexpr static size_t inmem_isam_fanout = inmem_isam_node_size / (sizeof(K) + sizeof(char*));
struct InMemISAMNode {
K keys[inmem_isam_fanout];
char* child[inmem_isam_fanout];
};
constexpr static size_t inmem_isam_leaf_fanout = inmem_isam_node_size / sizeof(R);
constexpr static size_t inmem_isam_node_keyskip = sizeof(K) * inmem_isam_fanout;
static_assert(sizeof(InMemISAMNode) == inmem_isam_node_size, "node size does not match");
public:
MemISAM(MutableBuffer<R>* buffer)
:m_reccnt(0), m_tombstone_cnt(0), m_isam_nodes(nullptr), m_deleted_cnt(0) {
m_bf = new BloomFilter<K>(BF_FPR, buffer->get_tombstone_count(), BF_HASH_FUNCS);
size_t alloc_size = (buffer->get_record_count() * sizeof(Wrapped<R>)) + (CACHELINE_SIZE - (buffer->get_record_count() * sizeof(Wrapped<R>)) % CACHELINE_SIZE);
assert(alloc_size % CACHELINE_SIZE == 0);
m_data = (Wrapped<R>*)std::aligned_alloc(CACHELINE_SIZE, alloc_size);
TIMER_INIT();
size_t offset = 0;
m_reccnt = 0;
auto base = buffer->get_data();
auto stop = base + buffer->get_record_count();
TIMER_START();
std::sort(base, stop, std::less<Wrapped<R>>());
TIMER_STOP();
auto sort_time = TIMER_RESULT();
TIMER_START();
while (base < stop) {
if (!base->is_tombstone() && (base + 1 < stop)
&& base->rec == (base + 1)->rec && (base + 1)->is_tombstone()) {
base += 2;
mrun_cancelations++;
continue;
} else if (base->is_deleted()) {
base += 1;
continue;
}
//Masking off the ts.
base->header &= 1;
m_data[m_reccnt++] = *base;
if (m_bf && base->is_tombstone()) {
++m_tombstone_cnt;
m_bf->insert(base->rec.key);
}
base++;
}
TIMER_STOP();
auto copy_time = TIMER_RESULT();
TIMER_START();
if (m_reccnt > 0) {
build_internal_levels();
}
TIMER_STOP();
auto level_time = TIMER_RESULT();
}
MemISAM(MemISAM** runs, size_t len)
: m_reccnt(0), m_tombstone_cnt(0), m_deleted_cnt(0), m_isam_nodes(nullptr) {
std::vector<Cursor<Wrapped<R>>> cursors;
cursors.reserve(len);
PriorityQueue<Wrapped<R>> pq(len);
size_t attemp_reccnt = 0;
size_t tombstone_count = 0;
for (size_t i = 0; i < len; ++i) {
if (runs[i]) {
auto base = runs[i]->get_data();
cursors.emplace_back(Cursor{base, base + runs[i]->get_record_count(), 0, runs[i]->get_record_count()});
attemp_reccnt += runs[i]->get_record_count();
tombstone_count += runs[i]->get_tombstone_count();
pq.push(cursors[i].ptr, i);
} else {
cursors.emplace_back(Cursor<Wrapped<R>>{nullptr, nullptr, 0, 0});
}
}
m_bf = new BloomFilter<K>(BF_FPR, tombstone_count, BF_HASH_FUNCS);
size_t alloc_size = (attemp_reccnt * sizeof(Wrapped<R>)) + (CACHELINE_SIZE - (attemp_reccnt * sizeof(Wrapped<R>)) % CACHELINE_SIZE);
assert(alloc_size % CACHELINE_SIZE == 0);
m_data = (Wrapped<R>*)std::aligned_alloc(CACHELINE_SIZE, alloc_size);
size_t offset = 0;
while (pq.size()) {
auto now = pq.peek();
auto next = pq.size() > 1 ? pq.peek(1) : queue_record<Wrapped<R>>{nullptr, 0};
if (!now.data->is_tombstone() && next.data != nullptr &&
now.data->rec == next.data->rec && next.data->is_tombstone()) {
pq.pop(); pq.pop();
auto& cursor1 = cursors[now.version];
auto& cursor2 = cursors[next.version];
if (advance_cursor(cursor1)) pq.push(cursor1.ptr, now.version);
if (advance_cursor(cursor2)) pq.push(cursor2.ptr, next.version);
} else {
auto& cursor = cursors[now.version];
if (!cursor.ptr->is_deleted()) {
m_data[m_reccnt++] = *cursor.ptr;
if (cursor.ptr->is_tombstone()) {
++m_tombstone_cnt;
m_bf->insert(cursor.ptr->rec.key);
}
}
pq.pop();
if (advance_cursor(cursor)) pq.push(cursor.ptr, now.version);
}
}
if (m_reccnt > 0) {
build_internal_levels();
}
}
~MemISAM() {
if (m_data) free(m_data);
if (m_isam_nodes) free(m_isam_nodes);
if (m_bf) delete m_bf;
}
Wrapped<R> *point_lookup(const R &rec, bool filter=false) {
if (filter && !m_bf->lookup(rec.key)) {
return nullptr;
}
size_t idx = get_lower_bound(rec.key);
if (idx >= m_reccnt) {
return nullptr;
}
while (idx < m_reccnt && m_data[idx].rec < rec) ++idx;
if (m_data[idx].rec == rec) {
return m_data + idx;
}
return nullptr;
}
Wrapped<R>* get_data() const {
return m_data;
}
size_t get_record_count() const {
return m_reccnt;
}
size_t get_tombstone_count() const {
return m_tombstone_cnt;
}
const Wrapped<R>* get_record_at(size_t idx) const {
return (idx < m_reccnt) ? m_data + idx : nullptr;
}
size_t get_memory_usage() {
return m_reccnt * sizeof(R) + m_internal_node_cnt * inmem_isam_node_size;
}
private:
size_t get_lower_bound(const K& key) const {
const InMemISAMNode* now = m_root;
while (!is_leaf(reinterpret_cast<const char*>(now))) {
const InMemISAMNode* next = nullptr;
for (size_t i = 0; i < inmem_isam_fanout - 1; ++i) {
if (now->child[i + 1] == nullptr || key <= now->keys[i]) {
next = reinterpret_cast<InMemISAMNode*>(now->child[i]);
break;
}
}
now = next ? next : reinterpret_cast<const InMemISAMNode*>(now->child[inmem_isam_fanout - 1]);
}
const Wrapped<R>* pos = reinterpret_cast<const Wrapped<R>*>(now);
while (pos < m_data + m_reccnt && pos->rec.key < key) pos++;
return pos - m_data;
}
size_t get_upper_bound(const K& key) const {
const InMemISAMNode* now = m_root;
while (!is_leaf(reinterpret_cast<const char*>(now))) {
const InMemISAMNode* next = nullptr;
for (size_t i = 0; i < inmem_isam_fanout - 1; ++i) {
if (now->child[i + 1] == nullptr || key < now->keys[i]) {
next = reinterpret_cast<InMemISAMNode*>(now->child[i]);
break;
}
}
now = next ? next : reinterpret_cast<const InMemISAMNode*>(now->child[inmem_isam_fanout - 1]);
}
const Wrapped<R>* pos = reinterpret_cast<const Wrapped<R>*>(now);
while (pos < m_data + m_reccnt && pos->rec.key <= key) pos++;
return pos - m_data;
}
void build_internal_levels() {
size_t n_leaf_nodes = m_reccnt / inmem_isam_leaf_fanout + (m_reccnt % inmem_isam_leaf_fanout != 0);
size_t level_node_cnt = n_leaf_nodes;
size_t node_cnt = 0;
do {
level_node_cnt = level_node_cnt / inmem_isam_fanout + (level_node_cnt % inmem_isam_fanout != 0);
node_cnt += level_node_cnt;
} while (level_node_cnt > 1);
size_t alloc_size = (node_cnt * inmem_isam_node_size) + (CACHELINE_SIZE - (node_cnt * inmem_isam_node_size) % CACHELINE_SIZE);
assert(alloc_size % CACHELINE_SIZE == 0);
m_isam_nodes = (InMemISAMNode*)std::aligned_alloc(CACHELINE_SIZE, alloc_size);
m_internal_node_cnt = node_cnt;
memset(m_isam_nodes, 0, node_cnt * inmem_isam_node_size);
InMemISAMNode* current_node = m_isam_nodes;
const Wrapped<R>* leaf_base = m_data;
const Wrapped<R>* leaf_stop = m_data + m_reccnt;
while (leaf_base < leaf_stop) {
size_t fanout = 0;
for (size_t i = 0; i < inmem_isam_fanout; ++i) {
auto rec_ptr = leaf_base + inmem_isam_leaf_fanout * i;
if (rec_ptr >= leaf_stop) break;
const Wrapped<R>* sep_key = std::min(rec_ptr + inmem_isam_leaf_fanout - 1, leaf_stop - 1);
current_node->keys[i] = sep_key->rec.key;
current_node->child[i] = (char*)rec_ptr;
++fanout;
}
current_node++;
leaf_base += fanout * inmem_isam_leaf_fanout;
}
auto level_start = m_isam_nodes;
auto level_stop = current_node;
auto current_level_node_cnt = level_stop - level_start;
while (current_level_node_cnt > 1) {
auto now = level_start;
while (now < level_stop) {
size_t child_cnt = 0;
for (size_t i = 0; i < inmem_isam_fanout; ++i) {
auto node_ptr = now + i;
++child_cnt;
if (node_ptr >= level_stop) break;
current_node->keys[i] = node_ptr->keys[inmem_isam_fanout - 1];
current_node->child[i] = (char*)node_ptr;
}
now += child_cnt;
current_node++;
}
level_start = level_stop;
level_stop = current_node;
current_level_node_cnt = level_stop - level_start;
}
assert(current_level_node_cnt == 1);
m_root = level_start;
}
bool is_leaf(const char* ptr) const {
return ptr >= (const char*)m_data && ptr < (const char*)(m_data + m_reccnt);
}
// Members: sorted data, internal ISAM levels, reccnt;
Wrapped<R>* m_data;
BloomFilter<K> *m_bf;
InMemISAMNode* m_isam_nodes;
InMemISAMNode* m_root;
size_t m_reccnt;
size_t m_tombstone_cnt;
size_t m_internal_node_cnt;
size_t m_deleted_cnt;
};
template <RecordInterface R, bool Rejection=true>
class IRSQuery {
public:
static void *get_query_state(MemISAM<R> *isam, void *parms) {
auto res = new IRSState<R>();
decltype(R::key) lower_key = ((irs_query_parms<R> *) parms)->lower_bound;
decltype(R::key) upper_key = ((irs_query_parms<R> *) parms)->upper_bound;
res->lower_bound = isam->get_lower_bound(lower_key);
res->upper_bound = isam->get_upper_bound(upper_key);
return res;
}
static void* get_buffer_query_state(MutableBuffer<R> *buffer, void *parms) {
auto res = new IRSBufferState<R>();
res->cutoff = buffer->get_record_count();
if constexpr (Rejection) {
return res;
}
auto lower_key = ((irs_query_parms<R> *) parms)->lower_bound;
auto upper_key = ((irs_query_parms<R> *) parms)->upper_bound;
for (size_t i=0; i<res->cutoff; i++) {
if (((buffer->get_data() + i)->rec.key >= lower_key) && ((buffer->get_data() + i)->rec.key <= upper_key)) {
res->records.emplace_back(*(buffer->get_data() + i));
}
}
return res;
}
static void process_query_states(void *query_parms, std::vector<void*> shard_states, void *buff_state) {
auto p = (irs_query_parms<R> *) query_parms;
auto bs = (IRSBufferState<R> *) buff_state;
std::vector<size_t> shard_sample_sizes = {0};
size_t buffer_sz = 0;
std::vector<size_t> weights;
if (Rejection) {
weights.push_back(bs->cutoff);
} else {
weights.push_back(bs->records.size());
}
decltype(R::weight) total_weight;
for (auto &s : shard_states) {
auto state = (IRSState<R> *) s;
total_weight += state->upper_bound - state->lower_bound;
weights.push_back(state->total_weight);
}
std::vector<double> normalized_weights;
for (auto w : weights) {
normalized_weights.push_back((double) w / (double) total_weight);
}
auto shard_alias = Alias(normalized_weights);
for (size_t i=0; i<p->sample_size; i++) {
auto idx = shard_alias.get(p->rng);
if (idx == 0) {
buffer_sz++;
} else {
shard_sample_sizes[idx - 1]++;
}
}
bs->sample_size = buffer_sz;
size_t i=1;
for (auto &s : shard_states) {
auto state = (IRSState<R> *) s;
state->sample_size = shard_sample_sizes[i++];
}
}
static std::vector<Wrapped<R>> query(MemISAM<R> *isam, void *q_state, void *parms) {
auto sample_sz = ((irs_query_parms<R> *) parms)->sample_size;
auto lower_key = ((irs_query_parms<R> *) parms)->lower_bound;
auto upper_key = ((irs_query_parms<R> *) parms)->upper_bound;
auto rng = ((irs_query_parms<R> *) parms)->rng;
auto state = (IRSState<R> *) q_state;
std::vector<Wrapped<R>> result_set;
if (sample_sz == 0) {
return result_set;
}
size_t attempts = 0;
size_t range_length = state->upper_bound - state->lower_bound;
do {
attempts++;
size_t idx = gsl_rng_uniform_int(rng, range_length);
result_set.emplace_back(*isam->get_record_at(state->lower_bound + idx));
} while (attempts < sample_sz);
return result_set;
}
static std::vector<Wrapped<R>> buffer_query(MutableBuffer<R> *buffer, void *state, void *parms) {
auto st = (IRSBufferState<R> *) state;
auto p = (irs_query_parms<R> *) parms;
std::vector<Wrapped<R>> result;
result.reserve(p->sample_size);
if constexpr (Rejection) {
for (size_t i=0; i<p->sample_size; i++) {
auto idx = gsl_rng_uniform_int(p->rng, st->cutoff);
auto rec = buffer->get_data() + idx;
if (rec->rec.key >= p->lower_bound && rec->rec.key <= p->upper_bound) {
result.emplace_back(*rec);
}
}
return result;
}
for (size_t i=0; i<p->sample_size; i++) {
auto idx = gsl_rng_uniform_int(p->rng, st->records.size());
result.emplace_back(st->records[idx]);
}
return result;
}
static std::vector<R> merge(std::vector<std::vector<R>> &results) {
std::vector<R> output;
for (size_t i=0; i<results.size(); i++) {
for (size_t j=0; j<results[i].size(); j++) {
output.emplace_back(results[i][j]);
}
}
return output;
}
static void delete_query_state(void *state) {
auto s = (IRSState<R> *) state;
delete s;
}
static void delete_buffer_query_state(void *state) {
auto s = (IRSBufferState<R> *) state;
delete s;
}
};
}
|