1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
#pragma once
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <limits>
#include <gsl/gsl_rng.h>
#include "psu-ds/PriorityQueue.h"
#include "framework/interface/Record.h"
template <typename R, size_t LEAFSZ=100>
class BSMVPTree {
public:
struct KNNQueryParms {
R point;
size_t k;
};
public:
static BSMVPTree *build(std::vector<R> &records) {
return new BSMVPTree(records);
}
static BSMVPTree *build_presorted(std::vector<R> &records) {
return new BSMVPTree(records);
}
std::vector<R> unbuild() {
return std::move(m_data);
}
std::vector<R> query(void *q) {
std::vector<R> rs;
/* return an empty result set if q is invalid */
if (q == nullptr) {
return rs;
}
auto parms = (BSMVPTree::KNNQueryParms*) q;
auto pq = psudb::PriorityQueue<R, de::DistCmpMax<R>>(parms->k, &parms->point);
if (parms->k >= m_data.size()) {
for (size_t i=0; i<m_data.size(); i++) {
if (m_ptrs[i].ptr != nullptr) {
pq.push(m_ptrs[i].ptr);
}
}
} else {
double farthest = std::numeric_limits<double>::max();
internal_search(m_root, parms->point, parms->k, pq, &farthest);
}
size_t i=0;
while (pq.size() > 0) {
rs.push_back(*pq.peek().data);
pq.pop();
}
return std::move(rs);
}
std::vector<R> query_merge(std::vector<R> &rsa, std::vector<R> &rsb, void* parms) {
KNNQueryParms *p = (KNNQueryParms *) parms;
R rec = p->point;
size_t k = p->k;
std::vector<R> output;
psudb::PriorityQueue<R, de::DistCmpMax<R>> pq(k, &rec);
for (size_t i=0; i<rsa.size(); i++) {
if (pq.size() < k) {
pq.push(&rsa[i]);
} else {
double head_dist = pq.peek().data->calc_distance(rec);
double cur_dist = rsa[i].calc_distance(rec);
if (cur_dist < head_dist) {
pq.pop();
pq.push(&rsa[i]);
}
}
}
for (size_t i=0; i<rsb.size(); i++) {
if (pq.size() < k) {
pq.push(&rsb[i]);
} else {
double head_dist = pq.peek().data->calc_distance(rec);
double cur_dist = rsb[i].calc_distance(rec);
if (cur_dist < head_dist) {
pq.pop();
pq.push(&rsb[i]);
}
}
}
while (pq.size() > 0) {
output.emplace_back(*pq.peek().data);
pq.pop();
}
return std::move(output);
}
size_t record_count() {
return m_data.size();
}
~BSMVPTree() {
delete m_root;
}
private:
struct vp_ptr {
R *ptr;
double dist;
};
struct vpnode {
size_t start;
size_t stop;
bool leaf;
double radius;
vpnode *inside;
vpnode *outside;
vpnode() : start(0), stop(0), leaf(false), radius(0.0), inside(nullptr), outside(nullptr) {}
~vpnode() {
delete inside;
delete outside;
}
};
std::vector<R> m_data;
std::vector<vp_ptr> m_ptrs;
vpnode *m_root;
size_t m_node_cnt;
BSMVPTree(std::vector<R> &records) {
m_data = std::move(records);
m_node_cnt = 0;
for (size_t i=0; i<m_data.size(); i++) {
m_ptrs.push_back({&m_data[i], 0});
}
m_root = build_vptree();
}
vpnode *build_vptree() {
if (m_data.size() == 0) {
return nullptr;
}
size_t lower = 0;
size_t upper = m_data.size() - 1;
auto rng = gsl_rng_alloc(gsl_rng_mt19937);
auto root = build_subtree(lower, upper, rng);
gsl_rng_free(rng);
return root;
}
vpnode *build_subtree(size_t start, size_t stop, gsl_rng *rng) {
/*
* base-case: sometimes happens (probably because of the +1 and -1
* in the first recursive call)
*/
if (start > stop) {
return nullptr;
}
/* base-case: create a leaf node */
if (stop - start <= LEAFSZ) {
vpnode *node = new vpnode();
node->start = start;
node->stop = stop;
node->leaf = true;
m_node_cnt++;
return node;
}
/*
* select a random element to be the root of the
* subtree
*/
auto i = start + gsl_rng_uniform_int(rng, stop - start + 1);
swap(start, i);
/* for efficiency, we'll pre-calculate the distances between each point and the root */
for (size_t i=start+1; i<=stop; i++) {
m_ptrs[i].dist = m_ptrs[start].ptr->calc_distance(*m_ptrs[i].ptr);
}
/*
* partition elements based on their distance from the start,
* with those elements with distance falling below the median
* distance going into the left sub-array and those above
* the median in the right. This is easily done using QuickSelect.
*/
auto mid = (start + 1 + stop) / 2;
quickselect(start + 1, stop, mid, m_ptrs[start].ptr, rng);
/* Create a new node based on this partitioning */
vpnode *node = new vpnode();
node->start = start;
/* store the radius of the circle used for partitioning the node. */
node->radius = m_ptrs[start].ptr->calc_distance(*m_ptrs[mid].ptr);
m_ptrs[start].dist = node->radius;
/* recursively construct the left and right subtrees */
node->inside = build_subtree(start + 1, mid-1, rng);
node->outside = build_subtree(mid, stop, rng);
m_node_cnt++;
return node;
}
void quickselect(size_t start, size_t stop, size_t k, R *p, gsl_rng *rng) {
if (start == stop) return;
auto pivot = partition(start, stop, p, rng);
if (k < pivot) {
quickselect(start, pivot - 1, k, p, rng);
} else if (k > pivot) {
quickselect(pivot + 1, stop, k, p, rng);
}
}
size_t partition(size_t start, size_t stop, R *p, gsl_rng *rng) {
auto pivot = start + gsl_rng_uniform_int(rng, stop - start);
swap(pivot, stop);
size_t j = start;
for (size_t i=start; i<stop; i++) {
if (m_ptrs[i].dist < m_ptrs[stop].dist) {
swap(j++, i);
}
}
swap(j, stop);
return j;
}
void swap(size_t idx1, size_t idx2) {
auto tmp = m_ptrs[idx1];
m_ptrs[idx1] = m_ptrs[idx2];
m_ptrs[idx2] = tmp;
}
void internal_search(vpnode *node, const R &point, size_t k, psudb::PriorityQueue<R,
de::DistCmpMax<R>> &pq, double *farthest) {
if (node == nullptr) return;
if (node->leaf) {
for (size_t i=node->start; i<=node->stop; i++) {
double d = point.calc_distance(*m_ptrs[i].ptr);
if (d < *farthest) {
if (pq.size() == k) {
pq.pop();
}
pq.push(m_ptrs[i].ptr);
if (pq.size() == k) {
*farthest = point.calc_distance(*pq.peek().data);
}
}
}
return;
}
double d = point.calc_distance(*m_ptrs[node->start].ptr);
if (d < *farthest) {
if (pq.size() == k) {
auto t = pq.peek().data;
pq.pop();
}
pq.push(m_ptrs[node->start].ptr);
if (pq.size() == k) {
*farthest = point.calc_distance(*pq.peek().data);
}
}
if (d < node->radius) {
if (d - (*farthest) <= node->radius) {
internal_search(node->inside, point, k, pq, farthest);
}
if (d + (*farthest) >= node->radius) {
internal_search(node->outside, point, k, pq, farthest);
}
} else {
if (d + (*farthest) >= node->radius) {
internal_search(node->outside, point, k, pq, farthest);
}
if (d - (*farthest) <= node->radius) {
internal_search(node->inside, point, k, pq, farthest);
}
}
}
};
|