/* {s.get_tombstone_count()} -> std::convertible_to; * include/shard/WIRS.h * * Copyright (C) 2023 Dong Xie * * All rights reserved. Published under the Modified BSD License. * */ #pragma once #include #include #include #include #include #include "ds/PriorityQueue.h" #include "util/Cursor.h" #include "ds/Alias.h" #include "ds/BloomFilter.h" #include "util/bf_config.h" #include "framework/MutableBuffer.h" #include "framework/RecordInterface.h" #include "framework/ShardInterface.h" #include "framework/QueryInterface.h" namespace de { thread_local size_t wirs_cancelations = 0; template struct wirs_query_parms { decltype(R::key) lower_bound; decltype(R::key) upper_bound; }; template class WIRSQuery; template struct wirs_node { struct wirs_node *left, *right; decltype(R::key) low, high; decltype(R::weight) weight; Alias* alias; }; template struct WIRSState { decltype(R::weight) tot_weight; std::vector*> nodes; Alias* top_level_alias; ~WIRSState() { if (top_level_alias) delete top_level_alias; } }; template class WIRS { private: typedef decltype(R::key) K; typedef decltype(R::value) V; typedef decltype(R::weight) W; public: friend class WIRSQuery; WIRS(MutableBuffer* buffer) : m_reccnt(0), m_tombstone_cnt(0), m_total_weight(0), m_root(nullptr) { size_t alloc_size = (buffer->get_record_count() * sizeof(R)) + (CACHELINE_SIZE - (buffer->get_record_count() * sizeof(R)) % CACHELINE_SIZE); assert(alloc_size % CACHELINE_SIZE == 0); m_data = (R*)std::aligned_alloc(CACHELINE_SIZE, alloc_size); m_bf = new BloomFilter(BF_FPR, buffer->get_tombstone_count(), BF_HASH_FUNCS); size_t offset = 0; m_reccnt = 0; auto base = buffer->get_data(); auto stop = base + buffer->get_record_count(); std::sort(base, stop, memtable_record_cmp); while (base < stop) { if (!(base->is_tombstone()) && (base + 1) < stop) { if (*base == *(base + 1) && (base + 1)->is_tombstone()) { base += 2; wirs_cancelations++; continue; } } else if (base->is_deleted()) { base += 1; continue; } base->header &= 1; m_data[m_reccnt++] = *base; m_total_weight+= base->weight; if (m_bf && base->is_tombstone()) { m_tombstone_cnt++; m_bf->insert(base->key); } base++; } if (m_reccnt > 0) { build_wirs_structure(); } } WIRS(WIRS** shards, size_t len) : m_reccnt(0), m_tombstone_cnt(0), m_total_weight(0), m_root(nullptr) { std::vector> cursors; cursors.reserve(len); PriorityQueue pq(len); size_t attemp_reccnt = 0; size_t tombstone_count = 0; for (size_t i = 0; i < len; ++i) { if (shards[i]) { auto base = shards[i]->sorted_output(); cursors.emplace_back(Cursor{base, base + shards[i]->get_record_count(), 0, shards[i]->get_record_count()}); attemp_reccnt += shards[i]->get_record_count(); tombstone_count += shards[i]->get_tombstone_count(); pq.push(cursors[i].ptr, i); } else { cursors.emplace_back(Cursor{nullptr, nullptr, 0, 0}); } } m_bf = new BloomFilter(BF_FPR, tombstone_count, BF_HASH_FUNCS); size_t alloc_size = (attemp_reccnt * sizeof(R)) + (CACHELINE_SIZE - (attemp_reccnt * sizeof(R)) % CACHELINE_SIZE); assert(alloc_size % CACHELINE_SIZE == 0); m_data = (R*)std::aligned_alloc(CACHELINE_SIZE, alloc_size); while (pq.size()) { auto now = pq.peek(); auto next = pq.size() > 1 ? pq.peek(1) : queue_record{nullptr, 0}; if (!now.data->is_tombstone() && next.data != nullptr && *now.data == *next.data && next.data->is_tombstone()) { pq.pop(); pq.pop(); auto& cursor1 = cursors[now.version]; auto& cursor2 = cursors[next.version]; if (advance_cursor(cursor1)) pq.push(cursor1.ptr, now.version); if (advance_cursor(cursor2)) pq.push(cursor2.ptr, next.version); } else { auto& cursor = cursors[now.version]; if (!cursor.ptr->is_deleted()) { m_data[m_reccnt++] = *cursor.ptr; m_total_weight += cursor.ptr->weight; if (m_bf && cursor.ptr->is_tombstone()) { ++m_tombstone_cnt; if (m_bf) m_bf->insert(cursor.ptr->key); } } pq.pop(); if (advance_cursor(cursor)) pq.push(cursor.ptr, now.version); } } if (m_reccnt > 0) { build_wirs_structure(); } } ~WIRS() { if (m_data) free(m_data); for (size_t i=0; ilookup(rec.key)) { return nullptr; } size_t idx = get_lower_bound(rec.key); if (idx >= m_reccnt) { return nullptr; } while (idx < m_reccnt && m_data[idx] < rec) ++idx; if (m_data[idx] == rec) { return m_data + idx; } return nullptr; } R* sorted_output() const { return m_data; } size_t get_record_count() const { return m_reccnt; } size_t get_tombstone_count() const { return m_tombstone_cnt; } const R* get_record_at(size_t idx) const { if (idx >= m_reccnt) return nullptr; return m_data + idx; } size_t get_memory_usage() { return 0; } private: size_t get_lower_bound(const K& key) const { size_t min = 0; size_t max = m_reccnt - 1; const char * record_key; while (min < max) { size_t mid = (min + max) / 2; if (key > m_data[mid].key) { min = mid + 1; } else { max = mid; } } return min; } bool covered_by(struct wirs_node* node, const K& lower_key, const K& upper_key) { auto low_index = node->low * m_group_size; auto high_index = std::min((node->high + 1) * m_group_size - 1, m_reccnt - 1); return lower_key < m_data[low_index].key && m_data[high_index].key < upper_key; } bool intersects(struct wirs_node* node, const K& lower_key, const K& upper_key) { auto low_index = node->low * m_group_size; auto high_index = std::min((node->high + 1) * m_group_size - 1, m_reccnt - 1); return lower_key < m_data[high_index].key && m_data[low_index].key < upper_key; } void build_wirs_structure() { m_group_size = std::ceil(std::log(m_reccnt)); size_t n_groups = std::ceil((double) m_reccnt / (double) m_group_size); // Fat point construction + low level alias.... double sum_weight = 0.0; std::vector weights; std::vector group_norm_weight; size_t i = 0; size_t group_no = 0; while (i < m_reccnt) { double group_weight = 0.0; group_norm_weight.clear(); for (size_t k = 0; k < m_group_size && i < m_reccnt; ++k, ++i) { auto w = m_data[i].weight; group_norm_weight.emplace_back(w); group_weight += w; sum_weight += w; } for (auto& w: group_norm_weight) if (group_weight) w /= group_weight; else w = 1.0 / group_norm_weight.size(); m_alias.emplace_back(new Alias(group_norm_weight)); weights.emplace_back(group_weight); } assert(weights.size() == n_groups); m_root = construct_wirs_node(weights, 0, n_groups-1); } struct wirs_node* construct_wirs_node(const std::vector& weights, size_t low, size_t high) { if (low == high) { return new wirs_node{nullptr, nullptr, low, high, weights[low], new Alias({1.0})}; } else if (low > high) return nullptr; std::vector node_weights; W sum = 0; for (size_t i = low; i < high; ++i) { node_weights.emplace_back(weights[i]); sum += weights[i]; } for (auto& w: node_weights) if (sum) w /= sum; else w = 1.0 / node_weights.size(); size_t mid = (low + high) / 2; return new wirs_node{construct_wirs_node(weights, low, mid), construct_wirs_node(weights, mid + 1, high), low, high, sum, new Alias(node_weights)}; } void free_tree(struct wirs_node* node) { if (node) { delete node->alias; free_tree(node->left); free_tree(node->right); delete node; } } R* m_data; std::vector m_alias; wirs_node* m_root; W m_total_weight; size_t m_reccnt; size_t m_tombstone_cnt; size_t m_group_size; BloomFilter *m_bf; }; template class WIRSQuery { public: static void *get_query_state(wirs_query_parms *parameters, WIRS *wirs) { auto res = new WIRSState(); decltype(R::key) lower_key = ((wirs_query_parms *) parameters)->lower_bound; decltype(R::key) upper_key = ((wirs_query_parms *) parameters)->upper_bound; // Simulate a stack to unfold recursion. double tot_weight = 0.0; struct wirs_node* st[64] = {0}; st[0] = wirs->m_root; size_t top = 1; while(top > 0) { auto now = st[--top]; if (covered_by(now, lower_key, upper_key) || (now->left == nullptr && now->right == nullptr && intersects(now, lower_key, upper_key))) { res->nodes.emplace_back(now); tot_weight += now->weight; } else { if (now->left && intersects(now->left, lower_key, upper_key)) st[top++] = now->left; if (now->right && intersects(now->right, lower_key, upper_key)) st[top++] = now->right; } } std::vector weights; for (const auto& node: res->nodes) { weights.emplace_back(node->weight / tot_weight); } res->tot_weight = tot_weight; res->top_level_alias = new Alias(weights); return res; } static std::vector *query(wirs_query_parms *parameters, WIRSState *state, WIRS *wirs) { auto sample_sz = parameters->sample_size; auto lower_key = parameters->lower_bound; auto upper_key = parameters->upper_bound; auto rng = parameters->rng; std::vector *result_set = new std::vector(); if (sample_sz == 0) { return 0; } // k -> sampling: three levels. 1. select a node -> select a fat point -> select a record. size_t cnt = 0; size_t attempts = 0; do { ++attempts; // first level.... auto node = state->nodes[state->top_level_alias->get(rng)]; // second level... auto fat_point = node->low + node->alias->get(rng); // third level... size_t rec_offset = fat_point * wirs->m_group_size + wirs->m_alias[fat_point]->get(rng); auto record = wirs->m_data + rec_offset; // bounds rejection if (lower_key > record->key || upper_key < record->key) { continue; } result_set->emplace_back(*record); cnt++; } while (attempts < sample_sz); return result_set; } static std::vector *merge(std::vector> *results) { std::vector *output = new std::vector(); for (size_t i=0; isize(); i++) { for (size_t j=0; j<(*results)[i]->size(); j++) { output->emplace_back(*((*results)[i])[j]); } } return output; } static void delete_query_state(void *parm) { wirs_query_parms *parameters = parm; delete parameters; } //{q.get_buffer_query_state(p, p)}; //{q.buffer_query(p, p)}; }; }