/* * include/shard/TrieSpline.h * * Copyright (C) 2023 Douglas B. Rumbaugh * * Distributed under the Modified BSD License. * * A shard shim around the TrieSpline learned index. * */ #pragma once #include #include "framework/ShardRequirements.h" #include "ts/builder.h" #include "psu-ds/BloomFilter.h" #include "util/bf_config.h" #include "util/SortedMerge.h" using psudb::CACHELINE_SIZE; using psudb::BloomFilter; using psudb::PriorityQueue; using psudb::queue_record; using psudb::byte; namespace de { template class TrieSpline { private: typedef decltype(R::key) K; typedef decltype(R::value) V; public: TrieSpline(BufferView buffer) : m_data(nullptr) , m_reccnt(0) , m_tombstone_cnt(0) , m_alloc_size(0) , m_max_key(0) , m_min_key(0) , m_bf(new BloomFilter(BF_FPR, buffer.get_tombstone_count(), BF_HASH_FUNCS)) { m_alloc_size = psudb::sf_aligned_alloc(CACHELINE_SIZE, buffer.get_record_count() * sizeof(Wrapped), (byte**) &m_data); auto res = sorted_array_from_bufferview(std::move(buffer), m_data, m_bf); m_reccnt = res.record_count; m_tombstone_cnt = res.tombstone_count; if (m_reccnt > 0) { m_min_key = m_data[0].rec.key; m_max_key = m_data[m_reccnt-1].rec.key; auto bldr = ts::Builder(m_min_key, m_max_key, E); for (size_t i=0; i &shards) : m_data(nullptr) , m_reccnt(0) , m_tombstone_cnt(0) , m_alloc_size(0) , m_max_key(0) , m_min_key(0) , m_bf(nullptr) { size_t attemp_reccnt = 0; size_t tombstone_count = 0; auto cursors = build_cursor_vec(shards, &attemp_reccnt, &tombstone_count); m_bf = new BloomFilter(BF_FPR, tombstone_count, BF_HASH_FUNCS); m_alloc_size = psudb::sf_aligned_alloc(CACHELINE_SIZE, attemp_reccnt * sizeof(Wrapped), (byte **) &m_data); auto res = sorted_array_merge(cursors, m_data, m_bf); m_reccnt = res.record_count; m_tombstone_cnt = res.tombstone_count; if (m_reccnt > 0) { m_min_key = m_data[0].rec.key; m_max_key = m_data[m_reccnt-1].rec.key; auto bldr = ts::Builder(m_min_key, m_max_key, E); for (size_t i=0; i *point_lookup(const R &rec, bool filter=false) { if (filter && !m_bf->lookup(rec)) { return nullptr; } size_t idx = get_lower_bound(rec.key); if (idx >= m_reccnt) { return nullptr; } while (idx < m_reccnt && m_data[idx].rec < rec) ++idx; if (m_data[idx].rec == rec) { return m_data + idx; } return nullptr; } Wrapped* get_data() const { return m_data; } size_t get_record_count() const { return m_reccnt; } size_t get_tombstone_count() const { return m_tombstone_cnt; } const Wrapped* get_record_at(size_t idx) const { if (idx >= m_reccnt) return nullptr; return m_data + idx; } size_t get_memory_usage() { return m_ts.GetSize() + m_alloc_size; } size_t get_aux_memory_usage() { return (m_bf) ? m_bf->memory_usage() : 0; } size_t get_lower_bound(const K& key) const { auto bound = m_ts.GetSearchBound(key); size_t idx = bound.begin; if (idx >= m_reccnt) { return m_reccnt; } // If the region to search is less than some pre-specified // amount, perform a linear scan to locate the record. if (bound.end - bound.begin < 256) { while (idx < bound.end && m_data[idx].rec.key < key) { idx++; } } else { // Otherwise, perform a binary search idx = bound.begin; size_t max = bound.end; while (idx < max) { size_t mid = (idx + max) / 2; if (key > m_data[mid].rec.key) { idx = mid + 1; } else { max = mid; } } } if (idx == m_reccnt) { return m_reccnt; } if (m_data[idx].rec.key > key && idx > 0 && m_data[idx-1].rec.key <= key) { return idx-1; } return idx; } private: Wrapped* m_data; size_t m_reccnt; size_t m_tombstone_cnt; size_t m_alloc_size; K m_max_key; K m_min_key; ts::TrieSpline m_ts; BloomFilter *m_bf; }; }