/* * include/shard/TrieSpline.h * * Copyright (C) 2023 Douglas B. Rumbaugh * * Distributed under the Modified BSD License. * * A shard shim around the TrieSpline learned index. * */ #pragma once #include #include "framework/ShardRequirements.h" #include "ts/builder.h" #include "psu-ds/PriorityQueue.h" #include "util/Cursor.h" #include "psu-ds/BloomFilter.h" #include "util/bf_config.h" #include "psu-util/timer.h" using psudb::CACHELINE_SIZE; using psudb::BloomFilter; using psudb::PriorityQueue; using psudb::queue_record; using psudb::byte; namespace de { template class TrieSpline { private: typedef decltype(R::key) K; typedef decltype(R::value) V; public: TrieSpline(BufferView buffer) : m_data(nullptr) , m_reccnt(0) , m_tombstone_cnt(0) , m_alloc_size(0) , m_max_key(0) , m_min_key(0) , m_bf(new BloomFilter(BF_FPR, buffer.get_tombstone_count(), BF_HASH_FUNCS)) { TIMER_INIT(); m_alloc_size = psudb::sf_aligned_alloc(CACHELINE_SIZE, buffer.get_record_count() * sizeof(Wrapped), (byte**) &m_data); TIMER_START(); auto temp_buffer = (Wrapped *) psudb::sf_aligned_calloc(CACHELINE_SIZE, buffer.get_record_count(), sizeof(Wrapped)); buffer.copy_to_buffer((byte *) temp_buffer); auto base = temp_buffer; auto stop = base + buffer.get_record_count(); std::sort(base, stop, std::less>()); K min_key = base->rec.key; K max_key = (stop-1)->rec.key; TIMER_STOP(); auto sort_time = TIMER_RESULT(); TIMER_START(); auto bldr = ts::Builder(min_key, max_key, E); while (base < stop) { if (!base->is_tombstone() && (base + 1 < stop) && base->rec == (base + 1)->rec && (base + 1)->is_tombstone()) { base += 2; continue; } else if (base->is_deleted()) { base += 1; continue; } // FIXME: this shouldn't be necessary, but the tagged record // bypass doesn't seem to be working on this code-path, so this // ensures that tagged records from the buffer are able to be // dropped, eventually. It should only need to be &= 1 base->header &= 3; m_data[m_reccnt++] = *base; bldr.AddKey(base->rec.key); if (m_bf && base->is_tombstone()) { ++m_tombstone_cnt; m_bf->insert(base->rec); } /* * determine the "true" min/max keys based on the scan. This is * to avoid situations where the min/max in the input array * are deleted and don't survive into the structure itself. */ if (m_reccnt == 0) { m_max_key = m_min_key = base->rec.key; } else if (base->rec.key > m_max_key) { m_max_key = base->rec.key; } else if (base->rec.key < m_min_key) { m_min_key = base->rec.key; } base++; } TIMER_STOP(); auto copy_time = TIMER_RESULT(); TIMER_START(); if (m_reccnt > 0) { m_ts = bldr.Finalize(); } TIMER_STOP(); auto level_time = TIMER_RESULT(); free(temp_buffer); } TrieSpline(std::vector &shards) : m_data(nullptr) , m_reccnt(0) , m_tombstone_cnt(0) , m_alloc_size(0) , m_max_key(0) , m_min_key(0) , m_bf(nullptr) { std::vector>> cursors; cursors.reserve(shards.size()); PriorityQueue> pq(shards.size()); size_t attemp_reccnt = 0; size_t tombstone_count = 0; /* * Initialize m_max_key and m_min_key using the values from the * first shard. These will later be updated when building * the initial priority queue to their true values. */ m_max_key = shards[0]->m_max_key; m_min_key = shards[0]->m_min_key; for (size_t i = 0; i < shards.size(); ++i) { if (shards[i]) { auto base = shards[i]->get_data(); cursors.emplace_back(Cursor{base, base + shards[i]->get_record_count(), 0, shards[i]->get_record_count()}); attemp_reccnt += shards[i]->get_record_count(); tombstone_count += shards[i]->get_tombstone_count(); pq.push(cursors[i].ptr, i); if (shards[i]->m_max_key > m_max_key) { m_max_key = shards[i]->m_max_key; } if (shards[i]->m_min_key < m_min_key) { m_min_key = shards[i]->m_min_key; } } else { cursors.emplace_back(Cursor>{nullptr, nullptr, 0, 0}); } } m_bf = new BloomFilter(BF_FPR, tombstone_count, BF_HASH_FUNCS); m_alloc_size = psudb::sf_aligned_alloc(CACHELINE_SIZE, attemp_reccnt * sizeof(Wrapped), (byte **) &m_data); auto bldr = ts::Builder(m_min_key, m_max_key, E); while (pq.size()) { auto now = pq.peek(); auto next = pq.size() > 1 ? pq.peek(1) : queue_record>{nullptr, 0}; if (!now.data->is_tombstone() && next.data != nullptr && now.data->rec == next.data->rec && next.data->is_tombstone()) { pq.pop(); pq.pop(); auto& cursor1 = cursors[now.version]; auto& cursor2 = cursors[next.version]; if (advance_cursor(cursor1)) pq.push(cursor1.ptr, now.version); if (advance_cursor(cursor2)) pq.push(cursor2.ptr, next.version); } else { auto& cursor = cursors[now.version]; if (!cursor.ptr->is_deleted()) { m_data[m_reccnt++] = *cursor.ptr; bldr.AddKey(cursor.ptr->rec.key); if (cursor.ptr->is_tombstone()) { ++m_tombstone_cnt; m_bf->insert(cursor.ptr->rec); } } pq.pop(); if (advance_cursor(cursor)) pq.push(cursor.ptr, now.version); } } if (m_reccnt > 0) { m_ts = bldr.Finalize(); } } ~TrieSpline() { free(m_data); delete m_bf; } Wrapped *point_lookup(const R &rec, bool filter=false) { if (filter && !m_bf->lookup(rec)) { return nullptr; } size_t idx = get_lower_bound(rec.key); if (idx >= m_reccnt) { return nullptr; } while (idx < m_reccnt && m_data[idx].rec < rec) ++idx; if (m_data[idx].rec == rec) { return m_data + idx; } return nullptr; } Wrapped* get_data() const { return m_data; } size_t get_record_count() const { return m_reccnt; } size_t get_tombstone_count() const { return m_tombstone_cnt; } const Wrapped* get_record_at(size_t idx) const { if (idx >= m_reccnt) return nullptr; return m_data + idx; } size_t get_memory_usage() { return m_ts.GetSize() + m_alloc_size; } size_t get_aux_memory_usage() { return 0; } size_t get_lower_bound(const K& key) const { auto bound = m_ts.GetSearchBound(key); size_t idx = bound.begin; if (idx >= m_reccnt) { return m_reccnt; } // If the region to search is less than some pre-specified // amount, perform a linear scan to locate the record. if (bound.end - bound.begin < 256) { while (idx < bound.end && m_data[idx].rec.key < key) { idx++; } } else { // Otherwise, perform a binary search idx = bound.begin; size_t max = bound.end; while (idx < max) { size_t mid = (idx + max) / 2; if (key > m_data[mid].rec.key) { idx = mid + 1; } else { max = mid; } } } if (idx == m_reccnt) { return m_reccnt; } if (m_data[idx].rec.key > key && idx > 0 && m_data[idx-1].rec.key <= key) { return idx-1; } return idx; } private: Wrapped* m_data; size_t m_reccnt; size_t m_tombstone_cnt; size_t m_alloc_size; K m_max_key; K m_min_key; ts::TrieSpline m_ts; BloomFilter *m_bf; }; }