/* * include/shard/PGM.h * * Copyright (C) 2023 Douglas B. Rumbaugh * Dong Xie * * Distributed under the Modified BSD License. * * A shard shim around the static version of the PGM learned * index. * * TODO: The code in this file is very poorly commented. */ #pragma once #include #include "framework/ShardRequirements.h" #include "pgm/pgm_index.hpp" #include "psu-ds/BloomFilter.h" #include "util/SortedMerge.h" #include "util/bf_config.h" using psudb::CACHELINE_SIZE; using psudb::BloomFilter; using psudb::PriorityQueue; using psudb::queue_record; using psudb::byte; namespace de { template class PGM { public: typedef R RECORD; private: typedef decltype(R::key) K; typedef decltype(R::value) V; public: PGM(BufferView buffer) : m_bf(nullptr) , m_reccnt(0) , m_tombstone_cnt(0) , m_alloc_size(0) { m_alloc_size = psudb::sf_aligned_alloc(CACHELINE_SIZE, buffer.get_record_count() * sizeof(Wrapped), (byte**) &m_data); std::vector keys; /* * Copy the contents of the buffer view into a temporary buffer, and * sort them. We still need to iterate over these temporary records to * apply tombstone/deleted record filtering, as well as any possible * per-record processing that is required by the shard being built. */ auto temp_buffer = (Wrapped *) psudb::sf_aligned_calloc(CACHELINE_SIZE, buffer.get_record_count(), sizeof(Wrapped)); buffer.copy_to_buffer((byte *) temp_buffer); auto base = temp_buffer; auto stop = base + buffer.get_record_count(); std::sort(base, stop, std::less>()); merge_info info = {0, 0}; /* * Iterate over the temporary buffer to process the records, copying * them into buffer as needed */ while (base < stop) { if (!base->is_tombstone() && (base + 1 < stop) && base->rec == (base + 1)->rec && (base + 1)->is_tombstone()) { base += 2; continue; } else if (base->is_deleted()) { base += 1; continue; } // FIXME: this shouldn't be necessary, but the tagged record // bypass doesn't seem to be working on this code-path, so this // ensures that tagged records from the buffer are able to be // dropped, eventually. It should only need to be &= 1 base->header &= 3; keys.emplace_back(base->rec.key); m_data[info.record_count++] = *base; if (base->is_tombstone()) { info.tombstone_count++; if (m_bf){ m_bf->insert(base->rec); } } base++; } free(temp_buffer); m_reccnt = info.record_count; m_tombstone_cnt = info.tombstone_count; if (m_reccnt > 0) { m_pgm = pgm::PGMIndex(keys); } } PGM(std::vector const &shards) : m_data(nullptr) , m_bf(nullptr) , m_reccnt(0) , m_tombstone_cnt(0) , m_alloc_size(0) { size_t attemp_reccnt = 0; size_t tombstone_count = 0; auto cursors = build_cursor_vec(shards, &attemp_reccnt, &tombstone_count); m_alloc_size = psudb::sf_aligned_alloc(CACHELINE_SIZE, attemp_reccnt * sizeof(Wrapped), (byte **) &m_data); std::vector keys; // FIXME: For smaller cursor arrays, it may be more efficient to skip // the priority queue and just do a scan. PriorityQueue> pq(cursors.size()); for (size_t i=0; i 1 ? pq.peek(1) : queue_record>{nullptr, 0}; /* * if the current record is not a tombstone, and the next record is * a tombstone that matches the current one, then the current one * has been deleted, and both it and its tombstone can be skipped * over. */ if (!now.data->is_tombstone() && next.data != nullptr && now.data->rec == next.data->rec && next.data->is_tombstone()) { pq.pop(); pq.pop(); auto& cursor1 = cursors[now.version]; auto& cursor2 = cursors[next.version]; if (advance_cursor(cursor1)) pq.push(cursor1.ptr, now.version); if (advance_cursor(cursor2)) pq.push(cursor2.ptr, next.version); } else { auto& cursor = cursors[now.version]; /* skip over records that have been deleted via tagging */ if (!cursor.ptr->is_deleted()) { keys.emplace_back(cursor.ptr->rec.key); m_data[info.record_count++] = *cursor.ptr; /* * if the record is a tombstone, increment the ts count and * insert it into the bloom filter if one has been * provided. */ if (cursor.ptr->is_tombstone()) { info.tombstone_count++; if (m_bf) { m_bf->insert(cursor.ptr->rec); } } } pq.pop(); if (advance_cursor(cursor)) pq.push(cursor.ptr, now.version); } } m_reccnt = info.record_count; m_tombstone_cnt = info.tombstone_count; if (m_reccnt > 0) { m_pgm = pgm::PGMIndex(keys); } } ~PGM() { free(m_data); delete m_bf; } Wrapped *point_lookup(const R &rec, bool filter=false) const { size_t idx = get_lower_bound(rec.key); if (idx >= m_reccnt) { return nullptr; } while (idx < m_reccnt && m_data[idx].rec < rec) ++idx; if (m_data[idx].rec == rec) { return m_data + idx; } return nullptr; } Wrapped* get_data() const { return m_data; } size_t get_record_count() const { return m_reccnt; } size_t get_tombstone_count() const { return m_tombstone_cnt; } const Wrapped* get_record_at(size_t idx) const { if (idx >= m_reccnt) return nullptr; return m_data + idx; } size_t get_memory_usage() const { return m_pgm.size_in_bytes(); } size_t get_aux_memory_usage() const { return (m_bf) ? m_bf->memory_usage() : 0; } size_t get_lower_bound(const K& key) const { auto bound = m_pgm.search(key); size_t idx = bound.lo; if (idx >= m_reccnt) { return m_reccnt; } /* * If the region to search is less than some pre-specified * amount, perform a linear scan to locate the record. */ if (bound.hi - bound.lo < 256) { while (idx < bound.hi && m_data[idx].rec.key < key) { idx++; } } else { /* Otherwise, perform a binary search */ idx = bound.lo; size_t max = bound.hi; while (idx < max) { size_t mid = (idx + max) / 2; if (key > m_data[mid].rec.key) { idx = mid + 1; } else { max = mid; } } } /* * the upper bound returned by PGM is one passed the end of the * array. If we are at that point, we should just return "not found" */ if (idx == m_reccnt) { return idx; } /* * We may have walked one passed the actual lower bound, so check * the index before the current one to see if it is the actual bound */ if (m_data[idx].rec.key > key && idx > 0 && m_data[idx-1].rec.key <= key) { return idx-1; } /* * Otherwise, check idx. If it is a valid bound, then return it, * otherwise return "not found". */ return (m_data[idx].rec.key >= key) ? idx : m_reccnt; } private: Wrapped* m_data; BloomFilter *m_bf; size_t m_reccnt; size_t m_tombstone_cnt; size_t m_alloc_size; K m_max_key; K m_min_key; pgm::PGMIndex m_pgm; }; }