/* * include/shard/MemISAM.h * * Copyright (C) 2023 Douglas Rumbaugh * Dong Xie * * All rights reserved. Published under the Modified BSD License. * */ #pragma once #include #include #include #include #include "framework/MutableBuffer.h" #include "util/bf_config.h" #include "ds/PriorityQueue.h" #include "util/Cursor.h" #include "util/timer.h" namespace de { thread_local size_t mrun_cancelations = 0; template class MemISAM { private: friend class InternalLevel; typedef decltype(R::key) K; typedef decltype(R::value) V; constexpr static size_t inmem_isam_node_size = 256; constexpr static size_t inmem_isam_fanout = inmem_isam_node_size / (sizeof(K) + sizeof(char*)); struct InMemISAMNode { K keys[inmem_isam_fanout]; char* child[inmem_isam_fanout]; }; constexpr static size_t inmem_isam_leaf_fanout = inmem_isam_node_size / sizeof(R); constexpr static size_t inmem_isam_node_keyskip = sizeof(K) * inmem_isam_fanout; static_assert(sizeof(InMemISAMNode) == inmem_isam_node_size, "node size does not match"); public: MemISAM(MutableBuffer* buffer) :m_reccnt(0), m_tombstone_cnt(0), m_isam_nodes(nullptr), m_deleted_cnt(0) { m_bf = new BloomFilter(BF_FPR, buffer->get_tombstone_count(), BF_HASH_FUNCS); size_t alloc_size = (buffer->get_record_count() * sizeof(R)) + (CACHELINE_SIZE - (buffer->get_record_count() * sizeof(R)) % CACHELINE_SIZE); assert(alloc_size % CACHELINE_SIZE == 0); m_data = (R*)std::aligned_alloc(CACHELINE_SIZE, alloc_size); TIMER_INIT(); size_t offset = 0; m_reccnt = 0; TIMER_START(); R* base = buffer->sorted_output(); TIMER_STOP(); auto sort_time = TIMER_RESULT(); R* stop = base + buffer->get_record_count(); TIMER_START(); while (base < stop) { if (!base->is_tombstone() && (base + 1 < stop) && *base == *(base + 1) && (base + 1)->is_tombstone()) { base += 2; mrun_cancelations++; continue; } else if (base->is_deleted()) { base += 1; continue; } //Masking off the ts. base->header &= 1; m_data[m_reccnt++] = *base; if (m_bf && base->is_tombstone()) { ++m_tombstone_cnt; m_bf->insert(base->key); } base++; } TIMER_STOP(); auto copy_time = TIMER_RESULT(); TIMER_START(); if (m_reccnt > 0) { build_internal_levels(); } TIMER_STOP(); auto level_time = TIMER_RESULT(); //fprintf(stdout, "%ld %ld %ld\n", sort_time, copy_time, level_time); } MemISAM(MemISAM** runs, size_t len) : m_reccnt(0), m_tombstone_cnt(0), m_deleted_cnt(0), m_isam_nodes(nullptr) { std::vector> cursors; cursors.reserve(len); PriorityQueue pq(len); size_t attemp_reccnt = 0; size_t tombstone_count = 0; for (size_t i = 0; i < len; ++i) { if (runs[i]) { auto base = runs[i]->sorted_output(); cursors.emplace_back(Cursor{base, base + runs[i]->get_record_count(), 0, runs[i]->get_record_count()}); attemp_reccnt += runs[i]->get_record_count(); tombstone_count += runs[i]->get_tombstone_count(); pq.push(cursors[i].ptr, i); } else { cursors.emplace_back(Cursor{nullptr, nullptr, 0, 0}); } } m_bf = new BloomFilter(BF_FPR, tombstone_count, BF_HASH_FUNCS); size_t alloc_size = (attemp_reccnt * sizeof(R)) + (CACHELINE_SIZE - (attemp_reccnt * sizeof(R)) % CACHELINE_SIZE); assert(alloc_size % CACHELINE_SIZE == 0); m_data = (R*)std::aligned_alloc(CACHELINE_SIZE, alloc_size); size_t offset = 0; while (pq.size()) { auto now = pq.peek(); auto next = pq.size() > 1 ? pq.peek(1) : queue_record{nullptr, 0}; if (!now.data->is_tombstone() && next.data != nullptr && *now.data == *next.data && next.data->is_tombstone()) { pq.pop(); pq.pop(); auto& cursor1 = cursors[now.version]; auto& cursor2 = cursors[next.version]; if (advance_cursor(cursor1)) pq.push(cursor1.ptr, now.version); if (advance_cursor(cursor2)) pq.push(cursor2.ptr, next.version); } else { auto& cursor = cursors[now.version]; if (!cursor.ptr->is_deleted()) { m_data[m_reccnt++] = *cursor.ptr; if (cursor.ptr->is_tombstone()) { ++m_tombstone_cnt; m_bf->insert(cursor.ptr->key); } } pq.pop(); if (advance_cursor(cursor)) pq.push(cursor.ptr, now.version); } } if (m_reccnt > 0) { build_internal_levels(); } } ~MemISAM() { if (m_data) free(m_data); if (m_isam_nodes) free(m_isam_nodes); if (m_bf) delete m_bf; } R* sorted_output() const { return m_data; } size_t get_record_count() const { return m_reccnt; } size_t get_tombstone_count() const { return m_tombstone_cnt; } R *point_lookup(R &rec, bool filter) { if (filter && !m_bf->lookup(rec.key)) { return nullptr; } size_t idx = get_lower_bound(rec.key); if (idx >= m_reccnt) { return false; } while (idx < m_reccnt && m_data[idx] < rec) ++idx; if (m_data[idx] == rec) { return m_data + idx; } return nullptr; } bool delete_record(const K& key, const V& val) { size_t idx = get_lower_bound(key); if (idx >= m_reccnt) { return false; } while (idx < m_reccnt && m_data[idx].lt(key, val)) ++idx; if (m_data[idx] == R {key, val}) { m_data[idx].set_delete_status(); m_deleted_cnt++; return true; } return false; } const R* get_record_at(size_t idx) const { return (idx < m_reccnt) ? m_data + idx : nullptr; } size_t get_lower_bound(const K& key) const { const InMemISAMNode* now = m_root; while (!is_leaf(reinterpret_cast(now))) { const InMemISAMNode* next = nullptr; for (size_t i = 0; i < inmem_isam_fanout - 1; ++i) { if (now->child[i + 1] == nullptr || key <= now->keys[i]) { next = reinterpret_cast(now->child[i]); break; } } now = next ? next : reinterpret_cast(now->child[inmem_isam_fanout - 1]); } const R* pos = reinterpret_cast(now); while (pos < m_data + m_reccnt && pos->key < key) pos++; return pos - m_data; } size_t get_upper_bound(const K& key) const { const InMemISAMNode* now = m_root; while (!is_leaf(reinterpret_cast(now))) { const InMemISAMNode* next = nullptr; for (size_t i = 0; i < inmem_isam_fanout - 1; ++i) { if (now->child[i + 1] == nullptr || key < now->keys[i]) { next = reinterpret_cast(now->child[i]); break; } } now = next ? next : reinterpret_cast(now->child[inmem_isam_fanout - 1]); } const R* pos = reinterpret_cast(now); while (pos < m_data + m_reccnt && pos->key <= key) pos++; return pos - m_data; } bool check_tombstone(const R& rec) const{ if (!m_bf->lookup(rec.key)) { return false; } size_t idx = get_lower_bound(key); if (idx >= m_reccnt) { return false; } R* ptr = m_data + idx; while (ptr < m_data + m_reccnt && ptr->lt(key, val)) ptr++; return *ptr == R {key, val} && ptr->is_tombstone(); } size_t get_memory_usage() { return m_reccnt * sizeof(R) + m_internal_node_cnt * inmem_isam_node_size; } private: void build_internal_levels() { size_t n_leaf_nodes = m_reccnt / inmem_isam_leaf_fanout + (m_reccnt % inmem_isam_leaf_fanout != 0); size_t level_node_cnt = n_leaf_nodes; size_t node_cnt = 0; do { level_node_cnt = level_node_cnt / inmem_isam_fanout + (level_node_cnt % inmem_isam_fanout != 0); node_cnt += level_node_cnt; } while (level_node_cnt > 1); size_t alloc_size = (node_cnt * inmem_isam_node_size) + (CACHELINE_SIZE - (node_cnt * inmem_isam_node_size) % CACHELINE_SIZE); assert(alloc_size % CACHELINE_SIZE == 0); m_isam_nodes = (InMemISAMNode*)std::aligned_alloc(CACHELINE_SIZE, alloc_size); m_internal_node_cnt = node_cnt; memset(m_isam_nodes, 0, node_cnt * inmem_isam_node_size); InMemISAMNode* current_node = m_isam_nodes; const R* leaf_base = m_data; const R* leaf_stop = m_data + m_reccnt; while (leaf_base < leaf_stop) { size_t fanout = 0; for (size_t i = 0; i < inmem_isam_fanout; ++i) { auto rec_ptr = leaf_base + inmem_isam_leaf_fanout * i; if (rec_ptr >= leaf_stop) break; const R* sep_key = std::min(rec_ptr + inmem_isam_leaf_fanout - 1, leaf_stop - 1); current_node->keys[i] = sep_key->key; current_node->child[i] = (char*)rec_ptr; ++fanout; } current_node++; leaf_base += fanout * inmem_isam_leaf_fanout; } auto level_start = m_isam_nodes; auto level_stop = current_node; auto current_level_node_cnt = level_stop - level_start; while (current_level_node_cnt > 1) { auto now = level_start; while (now < level_stop) { size_t child_cnt = 0; for (size_t i = 0; i < inmem_isam_fanout; ++i) { auto node_ptr = now + i; ++child_cnt; if (node_ptr >= level_stop) break; current_node->keys[i] = node_ptr->keys[inmem_isam_fanout - 1]; current_node->child[i] = (char*)node_ptr; } now += child_cnt; current_node++; } level_start = level_stop; level_stop = current_node; current_level_node_cnt = level_stop - level_start; } assert(current_level_node_cnt == 1); m_root = level_start; } bool is_leaf(const char* ptr) const { return ptr >= (const char*)m_data && ptr < (const char*)(m_data + m_reccnt); } // Members: sorted data, internal ISAM levels, reccnt; R* m_data; BloomFilter *m_bf; InMemISAMNode* m_isam_nodes; InMemISAMNode* m_root; size_t m_reccnt; size_t m_tombstone_cnt; size_t m_internal_node_cnt; size_t m_deleted_cnt; }; }