/* * include/shard/FSTrie.h * * Copyright (C) 2024 Douglas B. Rumbaugh * * Distributed under the Modified BSD License. * * A shard shim around the FSTrie learned index. */ #pragma once #include #include "framework/ShardRequirements.h" #include "fst.hpp" #include "util/SortedMerge.h" using psudb::CACHELINE_SIZE; using psudb::BloomFilter; using psudb::PriorityQueue; using psudb::queue_record; using psudb::byte; namespace de { template class FSTrie { private: typedef decltype(R::key) K; typedef decltype(R::value) V; static_assert(std::is_same_v, "FST requires std::string keys."); public: FSTrie(BufferView buffer) : m_data(nullptr) , m_reccnt(0) , m_alloc_size(0) { m_data = new Wrapped[buffer.get_record_count()](); m_alloc_size = sizeof(Wrapped) * buffer.get_record_count(); size_t cnt = 0; std::vector keys; keys.reserve(buffer.get_record_count()); /* * Copy the contents of the buffer view into a temporary buffer, and * sort them. We still need to iterate over these temporary records to * apply tombstone/deleted record filtering, as well as any possible * per-record processing that is required by the shard being built. */ auto temp_buffer = new Wrapped[buffer.get_record_count()](); for (size_t i=0; i>()); for (size_t i=0; i 0) { m_fst = new fst::Trie(keys); } delete[] temp_buffer; } FSTrie(std::vector &shards) : m_data(nullptr) , m_reccnt(0) , m_alloc_size(0) { size_t attemp_reccnt = 0; size_t tombstone_count = 0; auto cursors = build_cursor_vec(shards, &attemp_reccnt, &tombstone_count); m_data = new Wrapped[attemp_reccnt](); m_alloc_size = attemp_reccnt * sizeof(Wrapped); std::vector keys; keys.reserve(attemp_reccnt); // FIXME: For smaller cursor arrays, it may be more efficient to skip // the priority queue and just do a scan. PriorityQueue> pq(cursors.size()); for (size_t i=0; i 1 ? pq.peek(1) : queue_record>{nullptr, 0}; /* * if the current record is not a tombstone, and the next record is * a tombstone that matches the current one, then the current one * has been deleted, and both it and its tombstone can be skipped * over. */ if (!now.data->is_tombstone() && next.data != nullptr && now.data->rec == next.data->rec && next.data->is_tombstone()) { pq.pop(); pq.pop(); auto& cursor1 = cursors[now.version]; auto& cursor2 = cursors[next.version]; if (advance_cursor(cursor1)) pq.push(cursor1.ptr, now.version); if (advance_cursor(cursor2)) pq.push(cursor2.ptr, next.version); } else { auto& cursor = cursors[now.version]; /* skip over records that have been deleted via tagging */ if (!cursor.ptr->is_deleted() && cursor.ptr->rec.key != "") { m_data[m_reccnt] = *cursor.ptr; keys.push_back(m_data[m_reccnt].rec.key); m_reccnt++; } pq.pop(); if (advance_cursor(cursor)) pq.push(cursor.ptr, now.version); } } for (size_t i=0; i 0) { m_fst = new fst::Trie(keys); } } ~FSTrie() { delete[] m_data; delete m_fst; } Wrapped *point_lookup(const R &rec, bool filter=false) { auto idx = m_fst->exactSearch(rec.key); if (idx == fst::kNotFound) { return nullptr; } // FIXME: for convenience, I'm treating this Trie as a unique index // for now, so no need to scan forward and/or check values. This // also makes the point lookup query class a lot easier to make. // Ultimately, though, we can support non-unique indexes with some // extra work. return m_data + idx; } Wrapped* get_data() const { return m_data; } size_t get_record_count() const { return m_reccnt; } size_t get_tombstone_count() const { return 0; } const Wrapped* get_record_at(size_t idx) const { if (idx >= m_reccnt) return nullptr; return m_data + idx; } size_t get_memory_usage() { return m_fst->getMemoryUsage() + m_alloc_size; } size_t get_aux_memory_usage() { return 0; } size_t get_lower_bound(R &rec) {return 0;} size_t get_upper_bound(R &rec) {return 0;} private: Wrapped* m_data; size_t m_reccnt; size_t m_alloc_size; fst::Trie *m_fst; }; }