/* * include/framework/DynamicExtension.h * * Copyright (C) 2023-2024 Douglas B. Rumbaugh * Dong Xie * * Distributed under the Modified BSD License. * */ #pragma once #include #include #include #include #include "framework/interface/Scheduler.h" #include "framework/reconstruction/ReconstructionPolicy.h" #include "framework/scheduling/SerialScheduler.h" #include "framework/scheduling/Task.h" #include "framework/structure/ExtensionStructure.h" #include "framework/structure/MutableBuffer.h" #include "framework/util/Configuration.h" #include "framework/scheduling/Version.h" #include "util/types.h" namespace de { template QueryType, DeletePolicy D = DeletePolicy::TAGGING, SchedulerInterface SchedType = de::SerialScheduler> class DynamicExtension { private: /* convenience typedefs for commonly used types within the class */ typedef typename ShardType::RECORD RecordType; typedef MutableBuffer Buffer; typedef ExtensionStructure Structure; typedef Version Version; typedef BufferView BufView; typedef ReconstructionPolicy ReconPolicyType; typedef DEConfiguration ConfType; typedef typename QueryType::Parameters Parameters; typedef typename QueryType::LocalQuery LocalQuery; typedef typename QueryType::LocalQueryBuffer BufferQuery; typedef typename QueryType::LocalResultType LocalResult; typedef typename QueryType::ResultType QueryResult; static constexpr size_t QUERY = 1; static constexpr size_t RECONSTRUCTION = 2; public: /** * Create a new Dynamized version of a data structure, supporting * inserts and, possibly, deletes. The following parameters are used * for configuration of the structure, * @param buffer_low_watermark The number of records that can be * inserted before a buffer flush is initiated * * @param buffer_high_watermark The maximum buffer capacity, inserts * will begin to fail once this number is reached, until the * buffer flush has completed. Has no effect in single-threaded * operation * * @param scale_factor The rate at which the capacity of levels * grows; should be at least 2 for reasonable performance * * @param memory_budget Unused at this time * * @param thread_cnt The maximum number of threads available to the * framework's scheduler for use in answering queries and * performing compactions and flushes, etc. */ DynamicExtension(ConfType &&config) : m_config(std::move(config)) { m_buffer = std::make_unique(m_config.buffer_flush_trigger, m_config.buffer_size); m_sched = SchedType(m_config.maximum_memory_usage, m_config.maximum_threads); m_active_version.load(std::make_shared(INITIAL_VERSION, new Structure(), m_buffer.get(), 0)); } /** * Destructor for DynamicExtension. Will block until the completion of * any outstanding version transition, shut down the scheduler, and free * all currently allocated shards, buffers, etc., by calling their * destructors. */ ~DynamicExtension() { /* let any in-flight version transitions finish */ await_newest_version(); /* shutdown the scheduler */ m_sched.shutdown(); } /** * Inserts a record into the index. Returns 1 if the insert succeeds, * and 0 if it fails. Inserts may fail if the DynamicExtension's buffer * has reached the high water mark; in this case, the insert should be * retried when the buffer has flushed. The record will be immediately * visible inside the index upon the return of this function. * * @param rec The record to be inserted * * @return 1 on success, 0 on failure (in which case the insert should * be retried) */ int insert(const RecordType &rec) { return internal_append(rec, false); } /** * Erases a record from the index, according to the DeletePolicy * template parameter. Returns 1 on success and 0 on failure. The * equality comparison operator of RecordType is used to identify * the record to be deleted. * * Deletes behave differently, depending on the DeletionPolicy. For * Tombstone deletes, a tombstone record will be inserted into the * index. The presence of the deleted record is not checked first, so * deleting a record that does not exist will result in an unnecessary * tombstone record being written. * * Deletes using Tagging will perform a point lookup for the record to * be removed, and mark it as deleted in its header. * * @param rec The record to be deleted. The argument to this function * should compare equal to the record to be deleted. * * @return 1 on success, and 0 on failure. For tombstone deletes, a * failure will occur if the insert fails due to the buffer * being full, and can be retried. For tagging deletes, a * failure means that hte record to be deleted could not be * found in the index, and should *not* be retried. */ int erase(const RecordType &rec) { // FIXME: delete tagging will require a lot of extra work to get // operating "correctly" in a concurrent environment. /* * Get a view on the buffer *first*. This will ensure a stronger * ordering than simply accessing the buffer directly, but is * not *strictly* necessary. */ if constexpr (D == DeletePolicy::TAGGING) { static_assert(std::same_as, "Tagging is only supported in single-threaded operation"); auto view = m_buffer->get_buffer_view(); auto version = get_active_version(); if (version->get_mutable_structure()->tagged_delete(rec)) { return 1; } /* * the buffer will take the longest amount of time, and * probably has the lowest probability of having the record, * so we'll check it last. */ return view.delete_record(rec); } /* * If tagging isn't used, then delete using a tombstone */ return internal_append(rec, true); } /** * Schedule the execution of a query with specified parameters and * returns a future that can be used to access the results. The query * is executed asynchronously. * @param parms An rvalue reference to the query parameters. * * @return A future, from which the query results can be retrieved upon * query completion */ std::future query(Parameters &&parms) { return schedule_query(std::move(parms)); } /** * Determine the number of records (including tagged records and * tombstones) currently within the framework. This number is used for * determining when and how reconstructions occur. * * @return The number of records within the index */ size_t get_record_count() { auto version = get_active_version(); auto t = version->get_buffer().get_record_count() + version->get_structure()->get_record_count(); return t; } /** * Returns the number of tombstone records currently within the * index. This function can be called when tagged deletes are used, * but will always return 0 in that case. * * @return The number of tombstone records within the index */ size_t get_tombstone_count() { auto version = get_active_version(); auto t = version->get_buffer().get_tombstone_count() + version->get_structure()->get_tombstone_count(); return t; } /** * Get the number of levels within the framework. This count will * include any empty levels, but will not include the buffer. Note that * this is *not* the same as the number of shards when tiering is used, * as each level can contain multiple shards in that case. * * @return The number of levels within the index */ size_t get_height() { return get_active_version()->get_structure()->get_height(); } /** * Get the number of non-empty shards within the index. * * @return The number of non-empty shards within the index */ size_t get_shard_count() { return get_active_version()->get_structure()->get_shard_count(); } /** * Get the number of bytes of memory allocated across the framework for * storing records and associated index information (i.e., internal * ISAM tree nodes). This includes memory that is allocated but * currently unused in the buffer, or in shards themselves * (overallocation due to delete cancellation, etc.). * * @return The number of bytes of memory used for shards (as reported by * ShardType::get_memory_usage) and the buffer by the index. */ size_t get_memory_usage() { auto version = get_active_version(); auto t = m_buffer->get_memory_usage() + version->get_structure()->get_memory_usage(); return t; } /** * Get the number of bytes of memory allocated across the framework for * auxiliary structures. This can include bloom filters, aux * hashtables, etc. * * @return The number of bytes of memory used for auxilliary structures * (as reported by ShardType::get_aux_memory_usage) by the index. */ size_t get_aux_memory_usage() { return get_active_version()->get_structure()->get_aux_memory_usage(); } /** * Create a new single Shard object containing all of the records * within the framework (buffer and shards). * * @param await_reconstruction_completion Specifies whether the currently * active state of the index should be used to create the shard * (false), or if shard construction should wait for any active * reconstructions to finish first (true). Default value of false. * * @return A new shard object, containing a copy of all records within * the index. Ownership of this object is transfered to the * caller. */ ShardType * create_static_structure(bool await_reconstruction_completion = false) { if (await_reconstruction_completion) { await_newest_version(); } auto version = get_active_version(); auto structure = version->get_structure(); std::vector shards; if (structure->get_level_vector().size() > 0) { for (int i = structure->get_level_vector().size() - 1; i >= 0; i--) { if (structure->get_level_vector()[i] && structure->get_level_vector()[i]->get_record_count() > 0) { shards.emplace_back( structure->get_level_vector()[i]->get_combined_shard()); } } } /* * construct a shard from the buffer view. We'll hold the view * for as short a time as possible: once the records are exfiltrated * from the buffer, there's no reason to retain a hold on the view's * head pointer any longer */ { auto bv = version->get_buffer(); if (bv.get_record_count() > 0) { shards.emplace_back(new ShardType(std::move(bv))); } } ShardType *flattened = new ShardType(shards); for (auto shard : shards) { delete shard; } return flattened; } /* * Determines the newest pending version at the time of call, and * blocks until that version becomes active. */ void await_newest_version() { /* * versions are assigned by fetch and add on the counter, so the * newest assigned version number will be one less than the value * of the counter */ auto newest_pending_version = m_version_counter.load() - 1; /* versions signal on m_version_advance_cv when they activate */ while (m_active_version.load() < newest_pending_version) { std::unique_lock lk(m_version_advance_mtx); m_version_advance_cv.wait(lk); } return; } /** * Verify that the currently active version of the index does not * violate tombstone proportion invariants. Exposed for unit-testing * purposes. * * @return Returns true if the tombstone proportion invariant is * satisfied, and false if it is not. */ bool validate_tombstone_proportion() { return get_active_version()->get_structure()->validate_tombstone_proportion( m_config.maximum_delete_proportion); } /** * Calls SchedType::print_statistics, which should write a report of * scheduler performance statistics to stdout. */ void print_scheduler_statistics() const { m_sched.print_statistics(); } private: ConfType m_config; SchedType m_sched; std::unique_ptr m_buffer; size_t m_core_cnt; std::atomic m_next_core; ReconPolicyType const *m_recon_policy; /* versioning + concurrency variables */ std::atomic m_version_counter; typedef std::atomic> version_ptr; version_ptr m_active_version; typedef size_t version_id; const size_t INVALID_VERSION = 0; const size_t INITIAL_VERSION = 1; std::condition_variable m_version_advance_cv; std::mutex m_version_advance_mtx; alignas(64) std::atomic m_scheduling_reconstruction; void enforce_delete_invariant(Version *version) { auto structure = version->get_structure(); auto compactions = structure->get_compaction_tasks(); while (compactions.size() > 0) { /* schedule a compaction */ ReconstructionArgs *args = new ReconstructionArgs(); args->version = version; args->merges = compactions; args->extension = this; args->compaction = true; /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed * here */ auto wait = args->result.get_future(); m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); /* wait for compaction completion */ wait.get(); /* get a new batch of compactions to perform, if needed */ compactions = structure->get_compaction_tasks(); } } static void reconstruction(void *arguments) { auto args = (ReconstructionArgs *)arguments; auto extension = (DynamicExtension *) args->extension; extension->SetThreadAffinity(); if (args->priority == ReconstructionPriority::FLUSH) { /* we first construct a shard from the buffer */ auto buffview = args->version->get_buffer(); auto new_head = buffview.get_tail(); auto new_shard = Shard(std::move(buffview)); /* copy the currently active version's structure */ auto structure = extension->get_active_version()->get_structure()->clone(); } else { } Structure *vers = args->version->get_mutable_structure(); ReconstructionTask flush_task; flush_task.type = ReconstructionType::Invalid; for (size_t i = 0; i < args->tasks.size(); i++) { if (args->tasks[i].sources.size() > 0 && args->tasks[i].sources[0] == buffer_shid) { flush_task = args->tasks[i]; continue; } vers->perform_reconstruction(args->tasks[i]); } if (flush_task.type != ReconstructionType::Invalid) { /* * we'll grab the buffer AFTER doing the internal reconstruction, so we * can flush as many records as possible in one go. The reconstruction * was done so as to make room for the full buffer anyway, so there's * no real benefit to doing this first. */ auto buffer_view = args->version->get_buffer(); size_t new_head = buffer_view.get_tail(); vers->perform_flush(flush_task, std::move(buffer_view)); args->result.set_value(true); ((DynamicExtension *)args->extension)->advance_version(new_head); } else { args->result.set_value(true); } delete args; } static void async_query(void *arguments) { auto *args = (QueryArgs *)arguments; auto version = args->extension->get_active_version(); auto buffer = version->get_buffer(); auto vers = version->get_structure(); auto *parms = &(args->query_parms); /* create initial buffer query */ auto buffer_query = QueryType::local_preproc_buffer(&buffer, parms); /* create initial local queries */ std::vector> shards; std::vector local_queries = vers->get_local_queries(shards, parms); /* process local/buffer queries to create the final version */ QueryType::distribute_query(parms, local_queries, buffer_query); /* execute the local/buffer queries and combine the results into output */ QueryResult output; do { std::vector query_results(shards.size() + 1); for (size_t i = 0; i < query_results.size(); i++) { if (i == 0) { /* execute buffer query */ query_results[i] = QueryType::local_query_buffer(buffer_query); } else { /*execute local queries */ query_results[i] = QueryType::local_query(shards[i - 1].second, local_queries[i - 1]); } /* end query early if EARLY_ABORT is set and a result exists */ if constexpr (QueryType::EARLY_ABORT) { if (query_results[i].size() > 0) break; } } /* * combine the results of the local queries, also translating * from LocalResultType to ResultType */ QueryType::combine(query_results, parms, output); /* optionally repeat the local queries if necessary */ } while (QueryType::repeat(parms, output, local_queries, buffer_query)); /* return the output vector to caller via the future */ args->result_set.set_value(std::move(output)); /* clean up memory allocated for temporary query objects */ delete buffer_query; for (size_t i = 0; i < local_queries.size(); i++) { delete local_queries[i]; } delete args; } version_ptr get_active_version() { return m_active_version.load(); } /* * Create a new version with an assigned version number, but without * an assigned copy of the structure. Intended for use in flushing, * where the structure will be copied from the currently active version * at the time it is activated, but the version number must be claimed * early to minimize activation blocking. */ version_ptr create_version() { size_t version_id = m_version_counter.fetch_add(1); auto active_version = get_active_version(); version_ptr new_version = std::make_shared(version_id, nullptr, &m_buffer, 0); return new_version; } /* * Create a new version without an assigned version number, but with * a copy of the extension structure. This is for use with background * reconstructions, where the underlying structure is manipulated, but * no version number is claimed until the version is activated, to * prevent blocking buffer flushes. */ version_ptr create_version(Structure *structure) { version_ptr new_version = std::make_shared(INVALID_VERSION, structure, &m_buffer, 0); return new_version; } void install_new_version(version_ptr new_version) { assert(new_version->get_structure()); assert(new_version->get_version_number() != INVALID_VERSION); auto old = get_active_version(); assert(new_version->get_version_number() > old->get_version_number()); /* wait until our turn to install the new version */ auto lk = std::unique_lock(m_version_advance_mtx); while (new_version.load()->get_verison_number() != old.load()->get_version_number() + 1) { m_version_advance_cv.wait(lk); old = get_active_version(); } // FIXME: implement this interface // new_version->merge_changes_from(old.load().get()); /* * Only one version can have a given number, so we are safe to * directly assign here--nobody else is going to change it out from * under us. We're also protected under the mutex. */ m_active_version.store(new_version); m_version_advance_cv.notify_all(); } Structure *create_scratch_structure() { return get_active_version()->get_structure()->copy(); } void begin_reconstruction_scheduling() { bool cur_val; do { cur_val = m_scheduling_reconstruction.load(); } while(cur_val == true && !m_scheduling_reconstruction.compare_exchange_strong(cur_val, true)); } void end_reconstruction_scheduling() { /* no need for any other sync here, this thread has an implicit lock */ m_scheduling_reconstruction.store(false); } void schedule_flush() { begin_reconstruction_scheduling(); auto new_version = create_version(); auto *args = new ReconstructionArgs(); args->version.load(new_version); args->tasks = m_recon_policy->get_flush_tasks(args->version.get()); args->extension = this; args->priority = ReconstructionPriority::FLUSH; /* * NOTE: args is deleted by the reconstruction job, so shouldn't be * freed here */ m_sched.schedule_job(reconstruction, m_buffer->get_hwm(), args, RECONSTRUCTION); if (m_config.recon_enable_maint_on_flush) { schedule_maint_reconstruction(false); } end_reconstruction_scheduling(); } void schedule_maint_reconstruction(bool take_reconstruction_lock=true) { if (take_reconstruction_lock) { begin_reconstruction_scheduling(); } // FIXME: memory management issue here? auto new_version = create_version(m_active_version.load()->get_structure()); auto *args = new ReconstructionArgs(); args->version.load(new_version); args->tasks = m_recon_policy->get_reconstruction_tasks(args->version.get()); args->extension = this; args->priority = ReconstructionPriority::MAINT; /* * NOTE: args is deleted by the reconstruction job, so shouldn't be * freed here */ m_sched.schedule_job(reconstruction, m_buffer->get_hwm(), args, RECONSTRUCTION); if (take_reconstruction_lock) { end_reconstruction_scheduling(); } return; } std::future schedule_query(Parameters &&query_parms) { auto args = new QueryArgs(); args->extension = this; args->query_parms = std::move(query_parms); auto result = args->result_set.get_future(); m_sched.schedule_job(async_query, 0, (void *)args, QUERY); return result; } int internal_append(const RecordType &rec, bool ts) { if (m_buffer->is_at_low_watermark()) { auto old = false; if (m_scheduling_reconstruction.compare_exchange_strong(old, true)) { schedule_flush(); } } /* this will fail if the HWM is reached and return 0 */ return m_buffer->append(rec, ts); } //#ifdef _GNU_SOURCE #if 0 void SetThreadAffinity() { if constexpr (std::same_as) { return; } int core = m_next_core.fetch_add(1) % m_core_cnt; cpu_set_t mask; CPU_ZERO(&mask); switch (core % 2) { case 0: // 0 |-> 0 // 2 |-> 2 // 4 |-> 4 core = core + 0; break; case 1: // 1 |-> 28 // 3 |-> 30 // 5 |-> 32 core = (core - 1) + m_core_cnt; break; } CPU_SET(core, &mask); ::sched_setaffinity(0, sizeof(mask), &mask); } #else void SetThreadAffinity() {} #endif }; } // namespace de