/* * include/framework/DynamicExtension.h * * Copyright (C) 2023 Douglas B. Rumbaugh * Dong Xie * * Distributed under the Modified BSD License. * */ #pragma once #include #include #include #include #include #include "framework/interface/Scheduler.h" #include "framework/scheduling/FIFOScheduler.h" #include "framework/scheduling/SerialScheduler.h" #include "framework/structure/MutableBuffer.h" #include "framework/interface/Record.h" #include "framework/structure/ExtensionStructure.h" #include "framework/util/Configuration.h" #include "framework/scheduling/Epoch.h" namespace de { template S, QueryInterface Q, LayoutPolicy L=LayoutPolicy::TEIRING, DeletePolicy D=DeletePolicy::TAGGING, SchedulerInterface SCHED=SerialScheduler> class DynamicExtension { typedef S Shard; typedef MutableBuffer Buffer; typedef ExtensionStructure Structure; typedef Epoch _Epoch; typedef BufferView BufView; static constexpr size_t QUERY = 1; static constexpr size_t RECONSTRUCTION = 2; struct epoch_ptr { _Epoch *epoch; size_t refcnt; }; public: DynamicExtension(size_t buffer_lwm, size_t buffer_hwm, size_t scale_factor, size_t memory_budget=0, size_t thread_cnt=16) : m_scale_factor(scale_factor) , m_max_delete_prop(1) , m_sched(memory_budget, thread_cnt) , m_buffer(new Buffer(buffer_lwm, buffer_hwm)) , m_core_cnt(thread_cnt) , m_next_core(0) , m_epoch_cnt(0) { auto vers = new Structure(buffer_hwm, m_scale_factor, m_max_delete_prop); m_current_epoch.store({new _Epoch(0, vers, m_buffer, 0), 0}); m_previous_epoch.store({nullptr, 0}); m_next_epoch.store({nullptr, 0}); m_versions.insert(vers); } ~DynamicExtension() { /* let any in-flight epoch transition finish */ await_next_epoch(); /* shutdown the scheduler */ m_sched.shutdown(); /* delete all held resources */ delete m_next_epoch.load().epoch; delete m_current_epoch.load().epoch; delete m_previous_epoch.load().epoch; delete m_buffer; for (auto e : m_versions) { delete e; } } /* * Insert the record `rec` into the index. If the buffer is full and * the framework is blocking on an epoch transition, this call may fail * and return 0. In this case, retry the call again later. If * successful, 1 will be returned. The record will be immediately * visible in the buffer upon the successful return of this function. */ int insert(const R &rec) { return internal_append(rec, false); } /* * Erase the record `rec` from the index. It is assumed that `rec` * currently exists--no special checks are made for correctness here. * The behavior if this function will differ depending on if tombstone * or tagged deletes are used. * * Tombstone deletes - inserts a tombstone record for `rec`. This *may* * return 0 and fail if the buffer is full and the framework is * blocking on an epoch transition. In this case, repeat the call * later. 1 will be returned when the tombstone is successfully * inserted. * * Tagging deletes - Does a point lookup for the record across the * entire structure, and sets its delete bit when found. Returns 1 if * the record is found and marked, and 0 if it was not (i.e., if it * isn't present in the index). */ int erase(const R &rec) { // FIXME: delete tagging will require a lot of extra work to get // operating "correctly" in a concurrent environment. /* * Get a view on the buffer *first*. This will ensure a stronger * ordering than simply accessing the buffer directly, but is * not *strictly* necessary. */ if constexpr (D == DeletePolicy::TAGGING) { static_assert(std::same_as, "Tagging is only supported in single-threaded operation"); auto view = m_buffer->get_buffer_view(); auto epoch = get_active_epoch(); if (epoch->get_structure()->tagged_delete(rec)) { end_job(epoch); return 1; } end_job(epoch); /* * the buffer will take the longest amount of time, and * probably has the lowest probability of having the record, * so we'll check it last. */ return view.delete_record(rec); } /* * If tagging isn't used, then delete using a tombstone */ return internal_append(rec, true); } /* * Execute the query with parameters `parms` and return a future. This * future can be used to access a vector containing the results of the * query. * * The behavior of this function is undefined if `parms` is not a * pointer to a valid query parameter object for the query type used as * a template parameter to construct the framework. */ std::future> query(void *parms) { return schedule_query(parms); } /* * Returns the number of records (included tagged records and * tombstones) currently within the framework. */ size_t get_record_count() { auto epoch = get_active_epoch(); auto t = epoch->get_buffer().get_record_count() + epoch->get_structure()->get_record_count(); end_job(epoch); return t; } /* * Returns the number of tombstone records currently within the * framework. This function can be called when tagged deletes are used, * but will always return 0 in that case. */ size_t get_tombstone_count() { auto epoch = get_active_epoch(); auto t = epoch->get_buffer().get_tombstone_count() + epoch->get_structure()->get_tombstone_count(); end_job(epoch); return t; } /* * Get the number of levels within the framework. This count will * include any empty levels, but will not include the buffer. Note that * this is *not* the same as the number of shards when tiering is used, * as each level can contain multiple shards in that case. */ size_t get_height() { auto epoch = get_active_epoch(); auto t = epoch->get_structure()->get_height(); end_job(epoch); return t; } /* * Get the number of bytes of memory allocated across the framework for * storing records and associated index information (i.e., internal * ISAM tree nodes). This includes memory that is allocated but * currently unused in the buffer, or in shards themselves * (overallocation due to delete cancellation, etc.). */ size_t get_memory_usage() { auto epoch = get_active_epoch(); auto t= epoch->get_buffer().get_memory_usage() + epoch->get_structure()->get_memory_usage(); end_job(epoch); return t; } /* * Get the number of bytes of memory allocated across the framework for * auxiliary structures. This can include bloom filters, aux * hashtables, etc. */ size_t get_aux_memory_usage() { auto epoch = get_active_epoch(); auto t = epoch->get_buffer().get_aux_memory_usage() + epoch->get_structure()->get_aux_memory_usage(); end_job(epoch); return t; } /* * Returns the maximum physical capacity of the buffer, measured in * records. */ size_t get_buffer_capacity() { return m_buffer->get_capacity(); } /* * Create a new single Shard object containing all of the records * within the framework (buffer and shards). The optional parameter can * be used to specify whether the Shard should be constructed with the * currently active state of the framework (false), or if shard * construction should wait until any ongoing reconstructions have * finished and use that new version (true). */ Shard *create_static_structure(bool await_reconstruction_completion=false) { if (await_reconstruction_completion) { await_next_epoch(); } auto epoch = get_active_epoch(); auto vers = epoch->get_structure(); std::vector shards; if (vers->get_levels().size() > 0) { for (int i=vers->get_levels().size() - 1; i>= 0; i--) { if (vers->get_levels()[i] && vers->get_levels()[i]->get_record_count() > 0) { shards.emplace_back(vers->get_levels()[i]->get_combined_shard()); } } } /* * construct a shard from the buffer view. We'll hold the view * for as short a time as possible: once the records are exfiltrated * from the buffer, there's no reason to retain a hold on the view's * head pointer any longer */ { auto bv = epoch->get_buffer(); if (bv.get_record_count() > 0) { shards.emplace_back(new S(std::move(bv))); } } Shard *flattened = new S(shards); for (auto shard : shards) { delete shard; } end_job(epoch); return flattened; } /* * If the current epoch is *not* the newest one, then wait for * the newest one to become available. Otherwise, returns immediately. */ void await_next_epoch() { while (m_next_epoch.load().epoch != nullptr) { std::unique_lock lk(m_epoch_cv_lk); m_epoch_cv.wait(lk); } } /* * Mostly exposed for unit-testing purposes. Verifies that the current * active version of the ExtensionStructure doesn't violate the maximum * tombstone proportion invariant. */ bool validate_tombstone_proportion() { auto epoch = get_active_epoch(); auto t = epoch->get_structure()->validate_tombstone_proportion(); end_job(epoch); return t; } void print_scheduler_statistics() { m_sched.print_statistics(); } private: SCHED m_sched; Buffer *m_buffer; std::mutex m_struct_lock; std::set m_versions; alignas(64) std::atomic m_reconstruction_scheduled; std::atomic m_next_epoch; std::atomic m_current_epoch; std::atomic m_previous_epoch; std::condition_variable m_epoch_cv; std::mutex m_epoch_cv_lk; std::atomic m_epoch_cnt; size_t m_scale_factor; double m_max_delete_prop; std::atomic m_next_core; size_t m_core_cnt; void enforce_delete_invariant(_Epoch *epoch) { auto structure = epoch->get_structure(); auto compactions = structure->get_compaction_tasks(); while (compactions.size() > 0) { /* schedule a compaction */ ReconstructionArgs *args = new ReconstructionArgs(); args->epoch = epoch; args->merges = compactions; args->extension = this; args->compaction = true; /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed here */ auto wait = args->result.get_future(); m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); /* wait for compaction completion */ wait.get(); /* get a new batch of compactions to perform, if needed */ compactions = structure->get_compaction_tasks(); } } _Epoch *get_active_epoch() { epoch_ptr old, new_ptr; do { /* * during an epoch transition, a nullptr will installed in the * current_epoch. At this moment, the "new" current epoch will * soon be installed, but the "current" current epoch has been * moved back to m_previous_epoch. */ if (m_current_epoch.load().epoch == nullptr) { old = m_previous_epoch; new_ptr = {old.epoch, old.refcnt+1}; if (old.epoch != nullptr && m_previous_epoch.compare_exchange_strong(old, new_ptr)) { break; } } else { old = m_current_epoch; new_ptr = {old.epoch, old.refcnt+1}; if (old.epoch != nullptr && m_current_epoch.compare_exchange_strong(old, new_ptr)) { break; } } } while (true); assert(new_ptr.refcnt > 0); return new_ptr.epoch; } void advance_epoch(size_t buffer_head) { retire_epoch(m_previous_epoch.load().epoch); epoch_ptr tmp = {nullptr, 0}; epoch_ptr cur; do { cur = m_current_epoch; } while(!m_current_epoch.compare_exchange_strong(cur, tmp)); m_previous_epoch.store(cur); // FIXME: this may currently block because there isn't any // query preemption yet. At this point, we'd need to either // 1) wait for all queries on the old_head to finish // 2) kill all queries on the old_head // 3) somehow migrate all queries on the old_head to the new // version while (!m_next_epoch.load().epoch->advance_buffer_head(buffer_head)) { _mm_pause(); } m_current_epoch.store(m_next_epoch); m_next_epoch.store({nullptr, 0}); /* notify any blocking threads that the new epoch is available */ m_epoch_cv_lk.lock(); m_epoch_cv.notify_all(); m_epoch_cv_lk.unlock(); } /* * Creates a new epoch by copying the currently active one. The new epoch's * structure will be a shallow copy of the old one's. */ _Epoch *create_new_epoch() { /* * This epoch access is _not_ protected under the assumption that * only one reconstruction will be able to trigger at a time. If that condition * is violated, it is possible that this code will clone a retired * epoch. */ assert(m_next_epoch.load().epoch == nullptr); auto current_epoch = get_active_epoch(); m_epoch_cnt.fetch_add(1); m_next_epoch.store({current_epoch->clone(m_epoch_cnt.load()), 0}); end_job(current_epoch); std::unique_lock m_struct_lock; m_versions.insert(m_next_epoch.load().epoch->get_structure()); m_struct_lock.release(); return m_next_epoch.load().epoch; } void retire_epoch(_Epoch *epoch) { /* * Epochs with currently active jobs cannot * be retired. By the time retire_epoch is called, * it is assumed that a new epoch is active, meaning * that the epoch to be retired should no longer * accumulate new active jobs. Eventually, this * number will hit zero and the function will * proceed. */ if (epoch == nullptr) { return; } epoch_ptr old, new_ptr; new_ptr = {nullptr, 0}; do { old = m_previous_epoch.load(); /* * If running in single threaded mode, the failure to retire * an Epoch will result in the thread of execution blocking * indefinitely. */ if constexpr (std::same_as) { if (old.epoch == epoch) assert(old.refcnt == 0); } if (old.epoch == epoch && old.refcnt == 0 && m_previous_epoch.compare_exchange_strong(old, new_ptr)) { break; } usleep(1); } while(true); delete epoch; /* * Following the epoch's destruction, any buffers * or structures with no remaining references can * be safely freed. */ std::unique_lock lock(m_struct_lock); for (auto itr = m_versions.begin(); itr != m_versions.end();) { if ((*itr)->get_reference_count() == 0) { auto tmp = *itr; itr = m_versions.erase(itr); delete tmp; } else { itr++; } } } static void reconstruction(void *arguments) { auto args = (ReconstructionArgs *) arguments; ((DynamicExtension *) args->extension)->SetThreadAffinity(); Structure *vers = args->epoch->get_structure(); for (ssize_t i=0; imerges.size(); i++) { vers->reconstruction(args->merges[i].second, args->merges[i].first); } /* * we'll grab the buffer AFTER doing the internal reconstruction, so we * can flush as many records as possible in one go. The reconstruction * was done so as to make room for the full buffer anyway, so there's * no real benefit to doing this first. */ auto buffer_view = args->epoch->get_buffer(); size_t new_head = buffer_view.get_tail(); /* * if performing a compaction, don't flush the buffer, as * there is no guarantee that any necessary reconstructions * will free sufficient space in L0 to support a flush */ if (!args->compaction) { vers->flush_buffer(std::move(buffer_view)); } args->result.set_value(true); /* * Compactions occur on an epoch _before_ it becomes active, * and as a result the active epoch should _not_ be advanced as * part of a compaction */ if (!args->compaction) { ((DynamicExtension *) args->extension)->advance_epoch(new_head); } ((DynamicExtension *) args->extension)->m_reconstruction_scheduled.store(false); delete args; } static void async_query(void *arguments) { QueryArgs *args = (QueryArgs *) arguments; auto epoch = ((DynamicExtension *) args->extension)->get_active_epoch(); auto ptr1 = ((DynamicExtension *) args->extension)->m_previous_epoch.load().epoch; auto ptr2 = ((DynamicExtension *) args->extension)->m_current_epoch.load().epoch; auto ptr3 = ((DynamicExtension *) args->extension)->m_next_epoch.load().epoch; auto buffer = epoch->get_buffer(); auto vers = epoch->get_structure(); void *parms = args->query_parms; /* Get the buffer query states */ void *buffer_state = Q::get_buffer_query_state(&buffer, parms); /* Get the shard query states */ std::vector> shards; std::vector states = vers->get_query_states(shards, parms); Q::process_query_states(parms, states, buffer_state); std::vector>> query_results(shards.size() + 1); for (size_t i=0; i> local_results; ShardID shid; if (i == 0) { /* process the buffer first */ local_results = Q::buffer_query(buffer_state, parms); shid = INVALID_SHID; } else { local_results = Q::query(shards[i - 1].second, states[i - 1], parms); shid = shards[i - 1].first; } query_results[i] = std::move(filter_deletes(local_results, shid, vers, &buffer)); if constexpr (Q::EARLY_ABORT) { if (query_results[i].size() > 0) break; } } auto result = Q::merge(query_results, parms); args->result_set.set_value(std::move(result)); ((DynamicExtension *) args->extension)->end_job(epoch); Q::delete_buffer_query_state(buffer_state); for (size_t i=0; i *args = new ReconstructionArgs(); args->epoch = epoch; args->merges = epoch->get_structure()->get_reconstruction_tasks(m_buffer->get_high_watermark()); args->extension = this; args->compaction = false; /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed here */ m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); } std::future> schedule_query(void *query_parms) { QueryArgs *args = new QueryArgs(); args->extension = this; args->query_parms = query_parms; auto result = args->result_set.get_future(); m_sched.schedule_job(async_query, 0, args, QUERY); return result; } int internal_append(const R &rec, bool ts) { if (m_buffer->is_at_low_watermark()) { auto old = false; if (m_reconstruction_scheduled.compare_exchange_strong(old, true)) { schedule_reconstruction(); } } /* this will fail if the HWM is reached and return 0 */ return m_buffer->append(rec, ts); } static std::vector> filter_deletes(std::vector> &records, ShardID shid, Structure *vers, BufView *bview) { if constexpr (Q::SKIP_DELETE_FILTER) { return records; } std::vector> processed_records; processed_records.reserve(records.size()); /* * For delete tagging, we just need to check the delete bit * on each record. */ if constexpr (D == DeletePolicy::TAGGING) { for (auto &rec : records) { if (rec.is_deleted()) { continue; } processed_records.emplace_back(rec); } return processed_records; } /* * For tombstone deletes, we need to search for the corresponding * tombstone for each record. */ for (auto &rec : records) { if (rec.is_tombstone()) { continue; } // FIXME: need to figure out how best to re-enable the buffer tombstone // check in the correct manner. //if (buffview.check_tombstone(rec.rec)) { //continue; //} for (size_t i=0; iget_record_count(); i++) { if (bview->get(i)->is_tombstone() && bview->get(i)->rec == rec.rec) { continue; } } if (shid != INVALID_SHID) { for (size_t lvl=0; lvl<=shid.level_idx; lvl++) { if (vers->get_levels()[lvl]->check_tombstone(0, rec.rec)) { continue; } } if (vers->get_levels()[shid.level_idx]->check_tombstone(shid.shard_idx + 1, rec.rec)) { continue; } } processed_records.emplace_back(rec); } return processed_records; } void SetThreadAffinity() { int core = m_next_core.fetch_add(1) % m_core_cnt; cpu_set_t mask; CPU_ZERO(&mask); switch (core % 2) { case 0: // 0 |-> 0 // 2 |-> 2 // 4 |-> 4 core = core; break; case 1: // 1 |-> 28 // 3 |-> 30 // 5 |-> 32 core = (core - 1) + m_core_cnt; break; } CPU_SET(core, &mask); ::sched_setaffinity(0, sizeof(mask), &mask); } void end_job(_Epoch *epoch) { epoch_ptr old, new_ptr; do { if (m_previous_epoch.load().epoch == epoch) { old = m_previous_epoch; /* * This could happen if we get into the system during a * transition. In this case, we can just back out and retry */ if (old.epoch == nullptr) { continue; } assert(old.refcnt > 0); new_ptr = {old.epoch, old.refcnt - 1}; if (m_previous_epoch.compare_exchange_strong(old, new_ptr)) { break; } } else { old = m_current_epoch; /* * This could happen if we get into the system during a * transition. In this case, we can just back out and retry */ if (old.epoch == nullptr) { continue; } assert(old.refcnt > 0); new_ptr = {old.epoch, old.refcnt - 1}; if (m_current_epoch.compare_exchange_strong(old, new_ptr)) { break; } } } while (true); } }; }