/* * include/framework/DynamicExtension.h * * Copyright (C) 2023 Douglas B. Rumbaugh * Dong Xie * * Distributed under the Modified BSD License. * */ #pragma once #include #include #include #include #include #include #include "framework/interface/Scheduler.h" #include "framework/scheduling/FIFOScheduler.h" #include "framework/scheduling/SerialScheduler.h" #include "framework/structure/MutableBuffer.h" #include "framework/interface/Record.h" #include "framework/structure/ExtensionStructure.h" #include "framework/util/Configuration.h" #include "framework/scheduling/Epoch.h" namespace de { template class DynamicExtension { typedef S Shard; typedef MutableBuffer Buffer; typedef ExtensionStructure Structure; typedef Epoch _Epoch; typedef BufferView BufView; static constexpr size_t QUERY = 1; static constexpr size_t RECONSTRUCTION = 2; public: DynamicExtension(size_t buffer_lwm, size_t buffer_hwm, size_t scale_factor, size_t memory_budget=0, size_t thread_cnt=16) : m_scale_factor(scale_factor) , m_max_delete_prop(1) , m_sched(memory_budget, thread_cnt) , m_buffer(new Buffer(buffer_lwm, buffer_hwm)) , m_core_cnt(thread_cnt) , m_next_core(0) { auto vers = new Structure(buffer_hwm, m_scale_factor, m_max_delete_prop); auto epoch = new _Epoch(0, vers, m_buffer, 0); m_versions.insert(vers); m_epochs.insert({0, epoch}); } ~DynamicExtension() { /* let any in-flight epoch transition finish */ await_next_epoch(); /* deactivate the active epoch */ get_active_epoch()->set_inactive(); /* shutdown the scheduler */ m_sched.shutdown(); /* delete all held resources */ for (auto e : m_epochs) { delete e.second; } delete m_buffer; for (auto e : m_versions) { delete e; } } int insert(const R &rec) { return internal_append(rec, false); } int erase(const R &rec) { // FIXME: delete tagging will require a lot of extra work to get // operating "correctly" in a concurrent environment. /* * Get a view on the buffer *first*. This will ensure a stronger * ordering than simply accessing the buffer directly, but is * not *strictly* necessary. */ if constexpr (D == DeletePolicy::TAGGING) { auto view = m_buffer->get_buffer_view(); static_assert(std::same_as, "Tagging is only supported in single-threaded operation"); if (get_active_epoch()->get_structure()->tagged_delete(rec)) { return 1; } /* * the buffer will take the longest amount of time, and * probably has the lowest probability of having the record, * so we'll check it last. */ return view.delete_record(rec); } /* * If tagging isn't used, then delete using a tombstone */ return internal_append(rec, true); } std::future> query(void *parms) { return schedule_query(parms); } size_t get_record_count() { auto epoch = get_active_epoch_protected(); auto t = epoch->get_buffer().get_record_count() + epoch->get_structure()->get_record_count(); epoch->end_job(); return t; } size_t get_tombstone_count() { auto epoch = get_active_epoch_protected(); auto t = epoch->get_buffer().get_tombstone_count() + epoch->get_structure()->get_tombstone_count(); epoch->end_job(); return t; } size_t get_height() { auto epoch = get_active_epoch_protected(); auto t = epoch->get_structure()->get_height(); epoch->end_job(); return t; } size_t get_memory_usage() { auto epoch = get_active_epoch_protected(); auto t= epoch->get_buffer().get_memory_usage() + epoch->get_structure()->get_memory_usage(); epoch->end_job(); return t; } size_t get_aux_memory_usage() { auto epoch = get_active_epoch_protected(); auto t = epoch->get_buffer().get_aux_memory_usage() + epoch->get_structure()->get_aux_memory_usage(); epoch->end_job(); return t; } size_t get_buffer_capacity() { return m_buffer->get_capacity(); } Shard *create_static_structure(bool await_reconstruction_completion=false) { if (await_reconstruction_completion) { await_next_epoch(); } auto epoch = get_active_epoch_protected(); auto vers = epoch->get_structure(); std::vector shards; if (vers->get_levels().size() > 0) { for (int i=vers->get_levels().size() - 1; i>= 0; i--) { if (vers->get_levels()[i] && vers->get_levels()[i]->get_record_count() > 0) { shards.emplace_back(vers->get_levels()[i]->get_combined_shard()); } } } /* * construct a shard from the buffer view. We'll hold the view * for as short a time as possible: once the records are exfiltrated * from the buffer, there's no reason to retain a hold on the view's * head pointer any longer */ { auto bv = epoch->get_buffer(); if (bv.get_record_count() > 0) { shards.emplace_back(new S(std::move(bv))); } } Shard *flattened = new S(shards); for (auto shard : shards) { delete shard; } epoch->end_job(); return flattened; } /* * If the current epoch is *not* the newest one, then wait for * the newest one to become available. Otherwise, returns immediately. */ void await_next_epoch() { while (m_current_epoch.load() != m_newest_epoch.load()) { std::unique_lock lk(m_epoch_cv_lk); m_epoch_cv.wait(lk); } return; } /* * Mostly exposed for unit-testing purposes. Verifies that the current * active version of the ExtensionStructure doesn't violate the maximum * tombstone proportion invariant. */ bool validate_tombstone_proportion() { auto epoch = get_active_epoch_protected(); auto t = epoch->get_structure()->validate_tombstone_proportion(); epoch->end_job(); return t; } void print_scheduler_statistics() { m_sched.print_statistics(); } private: SCHED m_sched; Buffer *m_buffer; std::mutex m_struct_lock; std::set m_versions; alignas(64) std::atomic m_reconstruction_scheduled; std::atomic m_current_epoch; std::atomic m_newest_epoch; std::unordered_map m_epochs; std::condition_variable m_epoch_cv; std::mutex m_epoch_cv_lk; std::mutex m_epoch_transition_lk; std::shared_mutex m_epoch_retire_lk; size_t m_scale_factor; double m_max_delete_prop; std::atomic m_next_core; size_t m_core_cnt; void enforce_delete_invariant(_Epoch *epoch) { auto structure = epoch->get_structure(); auto compactions = structure->get_compaction_tasks(); while (compactions.size() > 0) { /* schedule a compaction */ ReconstructionArgs *args = new ReconstructionArgs(); args->epoch = epoch; args->merges = compactions; args->extension = this; args->compaction = true; /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed here */ auto wait = args->result.get_future(); /* * the reconstruction process calls end_job(), * so we must start one before calling it */ epoch->start_job(); m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); /* wait for compaction completion */ wait.get(); /* get a new batch of compactions to perform, if needed */ compactions = structure->get_compaction_tasks(); } } _Epoch *get_active_epoch() { return m_epochs[m_current_epoch.load()]; } _Epoch *get_active_epoch_protected() { m_epoch_retire_lk.lock_shared(); auto cur_epoch = m_current_epoch.load(); m_epochs[cur_epoch]->start_job(); m_epoch_retire_lk.unlock_shared(); return m_epochs[cur_epoch]; } void advance_epoch(size_t buffer_head) { m_epoch_transition_lk.lock(); size_t new_epoch_num = m_newest_epoch.load(); size_t old_epoch_num = m_current_epoch.load(); assert(new_epoch_num != old_epoch_num); _Epoch *new_epoch = m_epochs[new_epoch_num]; _Epoch *old_epoch = m_epochs[old_epoch_num]; /* * Verify the tombstone invariant within the epoch's structure, this * may require scheduling additional reconstructions. * * FIXME: having this inside the lock is going to TANK * insertion performance. */ enforce_delete_invariant(new_epoch); // FIXME: this may currently fail because there isn't any // query preemption yet. At this point, we'd need to either // 1) wait for all queries on the old_head to finish // 2) kill all queries on the old_head // 3) somehow migrate all queries on the old_head to the new // version auto res = new_epoch->advance_buffer_head(buffer_head); assert(res); m_current_epoch.fetch_add(1); old_epoch->set_inactive(); m_epoch_transition_lk.unlock(); /* notify any blocking threads that the new epoch is available */ m_epoch_cv_lk.lock(); m_epoch_cv.notify_all(); m_epoch_cv_lk.unlock(); retire_epoch(old_epoch); } /* * Creates a new epoch by copying the currently active one. The new epoch's * structure will be a shallow copy of the old one's. */ _Epoch *create_new_epoch() { /* * This epoch access is _not_ protected under the assumption that * only one reconstruction will be able to trigger at a time. If that condition * is violated, it is possible that this code will clone a retired * epoch. */ m_newest_epoch.fetch_add(1); auto new_epoch = get_active_epoch()->clone(m_newest_epoch.load()); std::unique_lock m_struct_lock; m_versions.insert(new_epoch->get_structure()); m_epochs.insert({m_newest_epoch.load(), new_epoch}); m_struct_lock.release(); return new_epoch; } void retire_epoch(_Epoch *epoch) { /* * Epochs with currently active jobs cannot * be retired. By the time retire_epoch is called, * it is assumed that a new epoch is active, meaning * that the epoch to be retired should no longer * accumulate new active jobs. Eventually, this * number will hit zero and the function will * proceed. */ do { if (epoch->retirable()) { break; } } while (true); m_epoch_retire_lk.lock(); /* remove epoch from the framework's map */ m_epochs.erase(epoch->get_epoch_number()); /* * The epoch's destructor will handle releasing * all the references it holds */ delete epoch; m_epoch_retire_lk.unlock(); /* NOTE: the BufferView mechanism handles freeing unused buffer space */ /* * Following the epoch's destruction, any buffers * or structures with no remaining references can * be safely freed. */ std::unique_lock lock(m_struct_lock); for (auto itr = m_versions.begin(); itr != m_versions.end();) { if ((*itr)->get_reference_count() == 0) { auto tmp = *itr; itr = m_versions.erase(itr); delete tmp; } else { itr++; } } } static void reconstruction(void *arguments) { auto args = (ReconstructionArgs *) arguments; ((DynamicExtension *) args->extension)->SetThreadAffinity(); Structure *vers = args->epoch->get_structure(); for (ssize_t i=0; imerges.size(); i++) { vers->reconstruction(args->merges[i].second, args->merges[i].first); } /* * we'll grab the buffer AFTER doing the internal reconstruction, so we * can flush as many records as possible in one go. The reconstruction * was done so as to make room for the full buffer anyway, so there's * no real benefit to doing this first. */ auto buffer_view = args->epoch->get_buffer(); size_t new_head = buffer_view.get_tail(); /* * if performing a compaction, don't flush the buffer, as * there is no guarantee that any necessary reconstructions * will free sufficient space in L0 to support a flush */ if (!args->compaction) { vers->flush_buffer(std::move(buffer_view)); } args->epoch->end_job(); args->result.set_value(true); /* * Compactions occur on an epoch _before_ it becomes active, * and as a result the active epoch should _not_ be advanced as * part of a compaction */ if (!args->compaction) { ((DynamicExtension *) args->extension)->advance_epoch(new_head); } ((DynamicExtension *) args->extension)->m_reconstruction_scheduled.store(false); delete args; } static void async_query(void *arguments) { QueryArgs *args = (QueryArgs *) arguments; auto buffer = args->epoch->get_buffer(); auto vers = args->epoch->get_structure(); void *parms = args->query_parms; /* Get the buffer query states */ void *buffer_state = Q::get_buffer_query_state(std::move(buffer), parms); /* Get the shard query states */ std::vector> shards; std::vector states = vers->get_query_states(shards, parms); Q::process_query_states(parms, states, buffer_state); std::vector>> query_results(shards.size() + 1); for (size_t i=0; i> local_results; ShardID shid; if (i == 0) { /* process the buffer first */ local_results = Q::buffer_query(buffer_state, parms); shid = INVALID_SHID; } else { local_results = Q::query(shards[i - 1].second, states[i - 1], parms); shid = shards[i - 1].first; } query_results[i] = std::move(filter_deletes(local_results, shid, vers)); if constexpr (Q::EARLY_ABORT) { if (query_results[i].size() > 0) break; } } auto result = Q::merge(query_results, parms); args->result_set.set_value(std::move(result)); args->epoch->end_job(); Q::delete_buffer_query_state(buffer_state); for (size_t i=0; istart_job(); ReconstructionArgs *args = new ReconstructionArgs(); args->epoch = epoch; args->merges = epoch->get_structure()->get_reconstruction_tasks(m_buffer->get_high_watermark()); args->extension = this; args->compaction = false; /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed here */ m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); } std::future> schedule_query(void *query_parms) { auto epoch = get_active_epoch_protected(); QueryArgs *args = new QueryArgs(); args->epoch = epoch; args->query_parms = query_parms; auto result = args->result_set.get_future(); m_sched.schedule_job(async_query, 0, args, QUERY); return result; } int internal_append(const R &rec, bool ts) { if (m_buffer->is_at_low_watermark()) { auto old = false; if (m_reconstruction_scheduled.compare_exchange_strong(old, true)) { schedule_reconstruction(); } } /* this will fail if the HWM is reached and return 0 */ return m_buffer->append(rec, ts); } static std::vector> filter_deletes(std::vector> &records, ShardID shid, Structure *vers) { if constexpr (!Q::SKIP_DELETE_FILTER) { return records; } std::vector> processed_records; processed_records.reserve(records.size()); /* * For delete tagging, we just need to check the delete bit * on each record. */ if constexpr (D == DeletePolicy::TAGGING) { for (auto &rec : records) { if (rec.is_deleted()) { continue; } processed_records.emplace_back(rec); } return processed_records; } /* * For tombstone deletes, we need to search for the corresponding * tombstone for each record. */ for (auto &rec : records) { if (rec.is_tombstone()) { continue; } // FIXME: need to figure out how best to re-enable the buffer tombstone // check in the correct manner. //if (buffview.check_tombstone(rec.rec)) { //continue; //} if (shid != INVALID_SHID) { for (size_t lvl=0; lvl<=shid.level_idx; lvl++) { if (vers->get_levels()[lvl]->check_tombstone(0, rec.rec)) { continue; } } if (vers->get_levels()[shid.level_idx]->check_tombstone(shid.shard_idx + 1, rec.rec)) { continue; } } processed_records.emplace_back(rec); } return processed_records; } void SetThreadAffinity() { int core = m_next_core.fetch_add(1) % m_core_cnt; cpu_set_t mask; CPU_ZERO(&mask); switch (core % 2) { case 0: // 0 |-> 0 // 2 |-> 2 // 4 |-> 4 core = core; break; case 1: // 1 |-> 28 // 3 |-> 30 // 5 |-> 32 core = (core - 1) + m_core_cnt; break; } CPU_SET(core, &mask); ::sched_setaffinity(0, sizeof(mask), &mask); } }; }