#include "alex.h" #include "include/standalone_utility.h" typedef uint64_t key_type; typedef uint64_t value_type; typedef alex::Alex Alex; struct record { key_type key; value_type value; }; struct query { key_type lower_bound; key_type upper_bound; }; template static bool build_insert_vec(std::fstream &file, std::vector &vec, size_t n, double delete_prop, std::vector &to_delete, bool binary=false) { vec.clear(); for (size_t i=0; i to_delete, bool progress=true, bool binary=false) { size_t batch = std::min(.1 * count, 25000.0); std::vector insert_vec; std::vector delete_vec; insert_vec.reserve(batch); delete_vec.reserve(batch*delete_prop); size_t inserted = 0; size_t delete_idx = 0; double last_percent = 0; while (inserted < count) { // Build vector of records to insert and potentially delete auto continue_warmup = build_insert_vec(file, insert_vec, batch, delete_prop, to_delete, binary); if (inserted > batch) { build_delete_vec(to_delete, delete_vec, batch*delete_prop); delete_idx = 0; } for (size_t i=0; i &to_delete, bool binary=false) { size_t delete_cnt = insert_cnt * delete_prop; size_t applied_deletes = 0; size_t applied_inserts = 0; size_t BATCH=1000; std::vector insert_vec; std::vector delete_vec; insert_vec.reserve(BATCH); delete_vec.reserve(BATCH*delete_prop); size_t delete_idx = 0; bool continue_benchmark = true; size_t total_time = 0; while (applied_inserts < insert_cnt && continue_benchmark) { continue_benchmark = build_insert_vec(file, insert_vec, BATCH, delete_prop, to_delete, binary); progress_update((double) applied_inserts / (double) insert_cnt, "inserting:"); if (applied_deletes < delete_cnt) { build_delete_vec(to_delete, delete_vec, BATCH*delete_prop); delete_idx = 0; } if (insert_vec.size() == 0) { break; } auto insert_start = std::chrono::high_resolution_clock::now(); for (size_t i=0; i(insert_stop - insert_start).count(); } progress_update(1.0, "inserting:"); size_t throughput = (((double) (applied_inserts + applied_deletes) / (double) total_time) * 1e9); fprintf(stdout, "%ld\t", throughput); } static void alex_rq_bench(Alex &alex, std::vector queries, size_t trial_cnt=1) { char progbuf[25]; sprintf(progbuf, "sampling:"); size_t batch_size = 100; size_t batches = trial_cnt / batch_size; size_t total_time = 0; std::vector result_set; for (int i=0; i(stop - start).count(); } size_t latency = total_time / (trial_cnt * queries.size()); fprintf(stdout, "%ld\t", latency); } int main(int argc, char **argv) { if (argc < 5) { fprintf(stderr, "Usage: alex_rq_bench \n"); exit(EXIT_FAILURE); } std::string filename = std::string(argv[1]); size_t record_count = atol(argv[2]); double delete_prop = atof(argv[3]); std::string qfilename = std::string(argv[4]); size_t buffer_cap = 12000; size_t scale_factor = 6; double max_delete_prop = delete_prop; bool use_osm = false; double insert_batch = 0.1; init_bench_env(record_count, true, use_osm); auto queries = read_range_queries(qfilename, .0001); Alex alex; std::fstream datafile; datafile.open(filename, std::ios::in | std::ios::binary); std::vector to_delete; // warm up the tree with initial_insertions number of initially inserted // records size_t warmup_cnt = insert_batch * record_count; warmup(datafile, alex, warmup_cnt, delete_prop, to_delete, true, true); size_t insert_cnt = record_count - warmup_cnt; alex_rq_insert(alex, datafile, insert_cnt, delete_prop, to_delete, true); size_t memory_usage = alex.model_size(); fprintf(stdout, "%ld\t", memory_usage); alex_rq_bench(alex, queries); fprintf(stdout, "\n"); delete_bench_env(); fflush(stdout); fflush(stderr); exit(EXIT_SUCCESS); }