diff options
| author | Douglas B. Rumbaugh <dbr4@psu.edu> | 2024-02-09 14:06:59 -0500 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-02-09 14:06:59 -0500 |
| commit | bc0f3cca3a5b495fcae1d3ad8d09e6d714da5d30 (patch) | |
| tree | 66333c55feb0ea8875a50e6dc07c8535d241bf1c /include/framework/DynamicExtension.h | |
| parent | 076e104b8672924c3d80cd1da2fdb5ebee1766ac (diff) | |
| parent | 46885246313358a3b606eca139b20280e96db10e (diff) | |
| download | dynamic-extension-bc0f3cca3a5b495fcae1d3ad8d09e6d714da5d30.tar.gz | |
Merge pull request #1 from dbrumbaugh/new-buffer
Initial Concurrency Implementation
Diffstat (limited to 'include/framework/DynamicExtension.h')
| -rw-r--r-- | include/framework/DynamicExtension.h | 960 |
1 files changed, 590 insertions, 370 deletions
diff --git a/include/framework/DynamicExtension.h b/include/framework/DynamicExtension.h index 524024b..7ea5370 100644 --- a/include/framework/DynamicExtension.h +++ b/include/framework/DynamicExtension.h @@ -1,302 +1,639 @@ /* * include/framework/DynamicExtension.h * - * Copyright (C) 2023 Douglas Rumbaugh <drumbaugh@psu.edu> + * Copyright (C) 2023 Douglas B. Rumbaugh <drumbaugh@psu.edu> * Dong Xie <dongx@psu.edu> * - * All rights reserved. Published under the Modified BSD License. + * Distributed under the Modified BSD License. * */ #pragma once #include <atomic> -#include <numeric> #include <cstdio> #include <vector> -#include "framework/MutableBuffer.h" -#include "framework/InternalLevel.h" -#include "framework/ShardInterface.h" -#include "framework/QueryInterface.h" -#include "framework/RecordInterface.h" +#include "framework/interface/Scheduler.h" +#include "framework/scheduling/FIFOScheduler.h" +#include "framework/scheduling/SerialScheduler.h" -#include "shard/WIRS.h" -#include "psu-util/timer.h" -#include "psu-ds/Alias.h" +#include "framework/structure/MutableBuffer.h" +#include "framework/interface/Record.h" +#include "framework/structure/ExtensionStructure.h" -namespace de { - -thread_local size_t sampling_attempts = 0; -thread_local size_t sampling_rejections = 0; -thread_local size_t deletion_rejections = 0; -thread_local size_t bounds_rejections = 0; -thread_local size_t tombstone_rejections = 0; -thread_local size_t buffer_rejections = 0; - -/* - * thread_local size_t various_sampling_times go here. - */ -thread_local size_t sample_range_time = 0; -thread_local size_t alias_time = 0; -thread_local size_t alias_query_time = 0; -thread_local size_t rejection_check_time = 0; -thread_local size_t buffer_sample_time = 0; -thread_local size_t memlevel_sample_time = 0; -thread_local size_t disklevel_sample_time = 0; -thread_local size_t sampling_bailouts = 0; - - -enum class LayoutPolicy { - LEVELING, - TEIRING -}; - -enum class DeletePolicy { - TOMBSTONE, - TAGGING -}; +#include "framework/util/Configuration.h" +#include "framework/scheduling/Epoch.h" -typedef ssize_t level_index; +namespace de { -template <RecordInterface R, ShardInterface S, QueryInterface Q, LayoutPolicy L=LayoutPolicy::TEIRING, DeletePolicy D=DeletePolicy::TAGGING> +template <RecordInterface R, ShardInterface<R> S, QueryInterface<R, S> Q, LayoutPolicy L=LayoutPolicy::TEIRING, + DeletePolicy D=DeletePolicy::TAGGING, SchedulerInterface SCHED=FIFOScheduler> class DynamicExtension { - //typedef typename S<R> Shard; typedef S Shard; typedef MutableBuffer<R> Buffer; + typedef ExtensionStructure<R, S, Q, L> Structure; + typedef Epoch<R, S, Q, L> _Epoch; + typedef BufferView<R> BufView; + + static constexpr size_t QUERY = 1; + static constexpr size_t RECONSTRUCTION = 2; + + struct epoch_ptr { + _Epoch *epoch; + size_t refcnt; + }; public: - DynamicExtension(size_t buffer_cap, size_t scale_factor, double max_delete_prop) - : m_scale_factor(scale_factor), m_max_delete_prop(max_delete_prop), - m_buffer(new Buffer(buffer_cap, buffer_cap * max_delete_prop)) - { } + DynamicExtension(size_t buffer_lwm, size_t buffer_hwm, size_t scale_factor, size_t memory_budget=0, + size_t thread_cnt=16) + : m_scale_factor(scale_factor) + , m_max_delete_prop(1) + , m_sched(memory_budget, thread_cnt) + , m_buffer(new Buffer(buffer_lwm, buffer_hwm)) + , m_core_cnt(thread_cnt) + , m_next_core(0) + , m_epoch_cnt(0) + { + auto vers = new Structure(buffer_hwm, m_scale_factor, m_max_delete_prop); + m_current_epoch.store({new _Epoch(0, vers, m_buffer, 0), 0}); + m_previous_epoch.store({nullptr, 0}); + m_next_epoch.store({nullptr, 0}); + } ~DynamicExtension() { - delete m_buffer; - for (size_t i=0; i<m_levels.size(); i++) { - delete m_levels[i]; - } + /* let any in-flight epoch transition finish */ + await_next_epoch(); + + /* shutdown the scheduler */ + m_sched.shutdown(); + + /* delete all held resources */ + delete m_next_epoch.load().epoch; + delete m_current_epoch.load().epoch; + delete m_previous_epoch.load().epoch; + + delete m_buffer; } + /* + * Insert the record `rec` into the index. If the buffer is full and + * the framework is blocking on an epoch transition, this call may fail + * and return 0. In this case, retry the call again later. If + * successful, 1 will be returned. The record will be immediately + * visible in the buffer upon the successful return of this function. + */ int insert(const R &rec) { return internal_append(rec, false); } + /* + * Erase the record `rec` from the index. It is assumed that `rec` + * currently exists--no special checks are made for correctness here. + * The behavior if this function will differ depending on if tombstone + * or tagged deletes are used. + * + * Tombstone deletes - inserts a tombstone record for `rec`. This *may* + * return 0 and fail if the buffer is full and the framework is + * blocking on an epoch transition. In this case, repeat the call + * later. 1 will be returned when the tombstone is successfully + * inserted. + * + * Tagging deletes - Does a point lookup for the record across the + * entire structure, and sets its delete bit when found. Returns 1 if + * the record is found and marked, and 0 if it was not (i.e., if it + * isn't present in the index). + */ int erase(const R &rec) { - Buffer *buffer; - + // FIXME: delete tagging will require a lot of extra work to get + // operating "correctly" in a concurrent environment. + + /* + * Get a view on the buffer *first*. This will ensure a stronger + * ordering than simply accessing the buffer directly, but is + * not *strictly* necessary. + */ if constexpr (D == DeletePolicy::TAGGING) { - auto buffer = get_buffer(); + static_assert(std::same_as<SCHED, SerialScheduler>, "Tagging is only supported in single-threaded operation"); - // Check the levels first. This assumes there aren't - // any undeleted duplicate records. - for (auto level : m_levels) { - if (level && level->delete_record(rec)) { - return 1; - } + auto view = m_buffer->get_buffer_view(); + + auto epoch = get_active_epoch(); + if (epoch->get_structure()->tagged_delete(rec)) { + end_job(epoch); + return 1; } - // the buffer will take the longest amount of time, and - // probably has the lowest probability of having the record, - // so we'll check it last. - return buffer->delete_record(rec); + end_job(epoch); + + /* + * the buffer will take the longest amount of time, and + * probably has the lowest probability of having the record, + * so we'll check it last. + */ + return view.delete_record(rec); } + /* + * If tagging isn't used, then delete using a tombstone + */ return internal_append(rec, true); } - std::vector<R> query(void *parms) { - auto buffer = get_buffer(); + /* + * Execute the query with parameters `parms` and return a future. This + * future can be used to access a vector containing the results of the + * query. + * + * The behavior of this function is undefined if `parms` is not a + * pointer to a valid query parameter object for the query type used as + * a template parameter to construct the framework. + */ + std::future<std::vector<R>> query(void *parms) { + return schedule_query(parms); + } + + /* + * Returns the number of records (included tagged records and + * tombstones) currently within the framework. + */ + size_t get_record_count() { + auto epoch = get_active_epoch(); + auto t = epoch->get_buffer().get_record_count() + epoch->get_structure()->get_record_count(); + end_job(epoch); + + return t; + } + + /* + * Returns the number of tombstone records currently within the + * framework. This function can be called when tagged deletes are used, + * but will always return 0 in that case. + */ + size_t get_tombstone_count() { + auto epoch = get_active_epoch(); + auto t = epoch->get_buffer().get_tombstone_count() + epoch->get_structure()->get_tombstone_count(); + end_job(epoch); - // Get the buffer query state - auto buffer_state = Q::get_buffer_query_state(buffer, parms); + return t; + } - // Get the shard query states - std::vector<std::pair<ShardID, Shard*>> shards; - std::vector<void*> states; + /* + * Get the number of levels within the framework. This count will + * include any empty levels, but will not include the buffer. Note that + * this is *not* the same as the number of shards when tiering is used, + * as each level can contain multiple shards in that case. + */ + size_t get_height() { + auto epoch = get_active_epoch(); + auto t = epoch->get_structure()->get_height(); + end_job(epoch); - for (auto &level : m_levels) { - level->get_query_states(shards, states, parms); - } + return t; + } - Q::process_query_states(parms, states, buffer_state); + /* + * Get the number of bytes of memory allocated across the framework for + * storing records and associated index information (i.e., internal + * ISAM tree nodes). This includes memory that is allocated but + * currently unused in the buffer, or in shards themselves + * (overallocation due to delete cancellation, etc.). + */ + size_t get_memory_usage() { + auto epoch = get_active_epoch(); + auto t= epoch->get_buffer().get_memory_usage() + epoch->get_structure()->get_memory_usage(); + end_job(epoch); - std::vector<std::vector<Wrapped<R>>> query_results(shards.size() + 1); + return t; + } - // Execute the query for the buffer - auto buffer_results = Q::buffer_query(buffer, buffer_state, parms); - query_results[0] = std::move(filter_deletes(buffer_results, {-1, -1}, buffer)); - if constexpr (Q::EARLY_ABORT) { - if (query_results[0].size() > 0) { - auto result = Q::merge(query_results, parms); - for (size_t i=0; i<states.size(); i++) { - Q::delete_query_state(states[i]); - } + /* + * Get the number of bytes of memory allocated across the framework for + * auxiliary structures. This can include bloom filters, aux + * hashtables, etc. + */ + size_t get_aux_memory_usage() { + auto epoch = get_active_epoch(); + auto t = epoch->get_buffer().get_aux_memory_usage() + epoch->get_structure()->get_aux_memory_usage(); + end_job(epoch); - Q::delete_buffer_query_state(buffer_state); - return result; - } + return t; + } + + /* + * Returns the maximum physical capacity of the buffer, measured in + * records. + */ + size_t get_buffer_capacity() { + return m_buffer->get_capacity(); + } + + /* + * Create a new single Shard object containing all of the records + * within the framework (buffer and shards). The optional parameter can + * be used to specify whether the Shard should be constructed with the + * currently active state of the framework (false), or if shard + * construction should wait until any ongoing reconstructions have + * finished and use that new version (true). + */ + Shard *create_static_structure(bool await_reconstruction_completion=false) { + if (await_reconstruction_completion) { + await_next_epoch(); } - // Execute the query for each shard - for (size_t i=0; i<shards.size(); i++) { - auto shard_results = Q::query(shards[i].second, states[i], parms); - query_results[i+1] = std::move(filter_deletes(shard_results, shards[i].first, buffer)); - if constexpr (Q::EARLY_ABORT) { - if (query_results[i].size() > 0) { - auto result = Q::merge(query_results, parms); - for (size_t i=0; i<states.size(); i++) { - Q::delete_query_state(states[i]); - } + auto epoch = get_active_epoch(); + auto vers = epoch->get_structure(); + std::vector<Shard *> shards; - Q::delete_buffer_query_state(buffer_state); - return result; + if (vers->get_levels().size() > 0) { + for (int i=vers->get_levels().size() - 1; i>= 0; i--) { + if (vers->get_levels()[i] && vers->get_levels()[i]->get_record_count() > 0) { + shards.emplace_back(vers->get_levels()[i]->get_combined_shard()); } } } - - // Merge the results together - auto result = Q::merge(query_results, parms); - for (size_t i=0; i<states.size(); i++) { - Q::delete_query_state(states[i]); + /* + * construct a shard from the buffer view. We'll hold the view + * for as short a time as possible: once the records are exfiltrated + * from the buffer, there's no reason to retain a hold on the view's + * head pointer any longer + */ + { + auto bv = epoch->get_buffer(); + if (bv.get_record_count() > 0) { + shards.emplace_back(new S(std::move(bv))); + } } - Q::delete_buffer_query_state(buffer_state); + Shard *flattened = new S(shards); - return result; - } + for (auto shard : shards) { + delete shard; + } - size_t get_record_count() { - size_t cnt = get_buffer()->get_record_count(); + end_job(epoch); + return flattened; + } - for (size_t i=0; i<m_levels.size(); i++) { - if (m_levels[i]) cnt += m_levels[i]->get_record_count(); + /* + * If the current epoch is *not* the newest one, then wait for + * the newest one to become available. Otherwise, returns immediately. + */ + void await_next_epoch() { + while (m_next_epoch.load().epoch != nullptr) { + std::unique_lock<std::mutex> lk(m_epoch_cv_lk); + m_epoch_cv.wait(lk); } + } - return cnt; + /* + * Mostly exposed for unit-testing purposes. Verifies that the current + * active version of the ExtensionStructure doesn't violate the maximum + * tombstone proportion invariant. + */ + bool validate_tombstone_proportion() { + auto epoch = get_active_epoch(); + auto t = epoch->get_structure()->validate_tombstone_proportion(); + end_job(epoch); + return t; } - size_t get_tombstone_cnt() { - size_t cnt = get_buffer()->get_tombstone_count(); - for (size_t i=0; i<m_levels.size(); i++) { - if (m_levels[i]) cnt += m_levels[i]->get_tombstone_count(); - } + void print_scheduler_statistics() { + m_sched.print_statistics(); + } + +private: + SCHED m_sched; - return cnt; + Buffer *m_buffer; + + //std::mutex m_struct_lock; + //std::set<Structure *> m_versions; + + alignas(64) std::atomic<bool> m_reconstruction_scheduled; + + std::atomic<epoch_ptr> m_next_epoch; + std::atomic<epoch_ptr> m_current_epoch; + std::atomic<epoch_ptr> m_previous_epoch; + + std::condition_variable m_epoch_cv; + std::mutex m_epoch_cv_lk; + + std::atomic<size_t> m_epoch_cnt; + + size_t m_scale_factor; + double m_max_delete_prop; + + std::atomic<int> m_next_core; + size_t m_core_cnt; + + void enforce_delete_invariant(_Epoch *epoch) { + auto structure = epoch->get_structure(); + auto compactions = structure->get_compaction_tasks(); + + while (compactions.size() > 0) { + + /* schedule a compaction */ + ReconstructionArgs<R, S, Q, L> *args = new ReconstructionArgs<R, S, Q, L>(); + args->epoch = epoch; + args->merges = compactions; + args->extension = this; + args->compaction = true; + /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed here */ + + auto wait = args->result.get_future(); + + m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); + + /* wait for compaction completion */ + wait.get(); + + /* get a new batch of compactions to perform, if needed */ + compactions = structure->get_compaction_tasks(); + } } - size_t get_height() { - return m_levels.size(); + _Epoch *get_active_epoch() { + epoch_ptr old, new_ptr; + + do { + /* + * during an epoch transition, a nullptr will installed in the + * current_epoch. At this moment, the "new" current epoch will + * soon be installed, but the "current" current epoch has been + * moved back to m_previous_epoch. + */ + if (m_current_epoch.load().epoch == nullptr) { + old = m_previous_epoch; + new_ptr = {old.epoch, old.refcnt+1}; + if (old.epoch != nullptr && m_previous_epoch.compare_exchange_strong(old, new_ptr)) { + break; + } + } else { + old = m_current_epoch; + new_ptr = {old.epoch, old.refcnt+1}; + if (old.epoch != nullptr && m_current_epoch.compare_exchange_strong(old, new_ptr)) { + break; + } + } + } while (true); + + assert(new_ptr.refcnt > 0); + + return new_ptr.epoch; } - size_t get_memory_usage() { - size_t cnt = m_buffer->get_memory_usage(); + void advance_epoch(size_t buffer_head) { + + retire_epoch(m_previous_epoch.load().epoch); + + epoch_ptr tmp = {nullptr, 0}; + epoch_ptr cur; + do { + cur = m_current_epoch; + } while(!m_current_epoch.compare_exchange_strong(cur, tmp)); + + m_previous_epoch.store(cur); - for (size_t i=0; i<m_levels.size(); i++) { - if (m_levels[i]) cnt += m_levels[i]->get_memory_usage(); + // FIXME: this may currently block because there isn't any + // query preemption yet. At this point, we'd need to either + // 1) wait for all queries on the old_head to finish + // 2) kill all queries on the old_head + // 3) somehow migrate all queries on the old_head to the new + // version + while (!m_next_epoch.load().epoch->advance_buffer_head(buffer_head)) { + _mm_pause(); } - return cnt; + + m_current_epoch.store(m_next_epoch); + m_next_epoch.store({nullptr, 0}); + + + /* notify any blocking threads that the new epoch is available */ + m_epoch_cv_lk.lock(); + m_epoch_cv.notify_all(); + m_epoch_cv_lk.unlock(); } - size_t get_aux_memory_usage() { - size_t cnt = m_buffer->get_aux_memory_usage(); + /* + * Creates a new epoch by copying the currently active one. The new epoch's + * structure will be a shallow copy of the old one's. + */ + _Epoch *create_new_epoch() { + /* + * This epoch access is _not_ protected under the assumption that + * only one reconstruction will be able to trigger at a time. If that condition + * is violated, it is possible that this code will clone a retired + * epoch. + */ + assert(m_next_epoch.load().epoch == nullptr); + auto current_epoch = get_active_epoch(); + + m_epoch_cnt.fetch_add(1); + m_next_epoch.store({current_epoch->clone(m_epoch_cnt.load()), 0}); + + end_job(current_epoch); + + return m_next_epoch.load().epoch; + } - for (size_t i=0; i<m_levels.size(); i++) { - if (m_levels[i]) { - cnt += m_levels[i]->get_aux_memory_usage(); - } + void retire_epoch(_Epoch *epoch) { + /* + * Epochs with currently active jobs cannot + * be retired. By the time retire_epoch is called, + * it is assumed that a new epoch is active, meaning + * that the epoch to be retired should no longer + * accumulate new active jobs. Eventually, this + * number will hit zero and the function will + * proceed. + */ + + if (epoch == nullptr) { + return; } - return cnt; - } + epoch_ptr old, new_ptr; + new_ptr = {nullptr, 0}; + do { + old = m_previous_epoch.load(); + + /* + * If running in single threaded mode, the failure to retire + * an Epoch will result in the thread of execution blocking + * indefinitely. + */ + if constexpr (std::same_as<SCHED, SerialScheduler>) { + if (old.epoch == epoch) assert(old.refcnt == 0); + } - bool validate_tombstone_proportion() { - long double ts_prop; - for (size_t i=0; i<m_levels.size(); i++) { - if (m_levels[i]) { - ts_prop = (long double) m_levels[i]->get_tombstone_count() / (long double) calc_level_record_capacity(i); - if (ts_prop > (long double) m_max_delete_prop) { - return false; - } + if (old.epoch == epoch && old.refcnt == 0 && + m_previous_epoch.compare_exchange_strong(old, new_ptr)) { + break; } - } + usleep(1); + + } while(true); - return true; + delete epoch; } - size_t get_buffer_capacity() { - return m_buffer->get_capacity(); + static void reconstruction(void *arguments) { + auto args = (ReconstructionArgs<R, S, Q, L> *) arguments; + + ((DynamicExtension *) args->extension)->SetThreadAffinity(); + Structure *vers = args->epoch->get_structure(); + + for (ssize_t i=0; i<args->merges.size(); i++) { + vers->reconstruction(args->merges[i].second, args->merges[i].first); + } + + /* + * we'll grab the buffer AFTER doing the internal reconstruction, so we + * can flush as many records as possible in one go. The reconstruction + * was done so as to make room for the full buffer anyway, so there's + * no real benefit to doing this first. + */ + auto buffer_view = args->epoch->get_buffer(); + size_t new_head = buffer_view.get_tail(); + + /* + * if performing a compaction, don't flush the buffer, as + * there is no guarantee that any necessary reconstructions + * will free sufficient space in L0 to support a flush + */ + if (!args->compaction) { + vers->flush_buffer(std::move(buffer_view)); + } + + args->result.set_value(true); + + /* + * Compactions occur on an epoch _before_ it becomes active, + * and as a result the active epoch should _not_ be advanced as + * part of a compaction + */ + if (!args->compaction) { + ((DynamicExtension *) args->extension)->advance_epoch(new_head); + } + + ((DynamicExtension *) args->extension)->m_reconstruction_scheduled.store(false); + + delete args; } - Shard *create_static_structure() { - std::vector<Shard *> shards; + static void async_query(void *arguments) { + QueryArgs<R, S, Q, L> *args = (QueryArgs<R, S, Q, L> *) arguments; - if (m_levels.size() > 0) { - for (int i=m_levels.size() - 1; i>= 0; i--) { - if (m_levels[i]) { - shards.emplace_back(m_levels[i]->get_merged_shard()); - } - } - } + auto epoch = ((DynamicExtension *) args->extension)->get_active_epoch(); + + auto ptr1 = ((DynamicExtension *) args->extension)->m_previous_epoch.load().epoch; + auto ptr2 = ((DynamicExtension *) args->extension)->m_current_epoch.load().epoch; + auto ptr3 = ((DynamicExtension *) args->extension)->m_next_epoch.load().epoch; + + + auto buffer = epoch->get_buffer(); + auto vers = epoch->get_structure(); + void *parms = args->query_parms; + + /* Get the buffer query states */ + void *buffer_state = Q::get_buffer_query_state(&buffer, parms); + + /* Get the shard query states */ + std::vector<std::pair<ShardID, Shard*>> shards; + std::vector<void *> states = vers->get_query_states(shards, parms); + + Q::process_query_states(parms, states, buffer_state); - shards.emplace_back(new S(get_buffer())); + std::vector<std::vector<Wrapped<R>>> query_results(shards.size() + 1); + for (size_t i=0; i<query_results.size(); i++) { + std::vector<Wrapped<R>> local_results; + ShardID shid; + + if (i == 0) { /* process the buffer first */ + local_results = Q::buffer_query(buffer_state, parms); + shid = INVALID_SHID; + } else { + local_results = Q::query(shards[i - 1].second, states[i - 1], parms); + shid = shards[i - 1].first; + } - Shard *shards_array[shards.size()]; + query_results[i] = std::move(filter_deletes(local_results, shid, vers, &buffer)); - size_t j = 0; - for (size_t i=0; i<shards.size(); i++) { - if (shards[i]) { - shards_array[j++] = shards[i]; + if constexpr (Q::EARLY_ABORT) { + if (query_results[i].size() > 0) break; } } - Shard *flattened = new S(shards_array, j); + auto result = Q::merge(query_results, parms); + args->result_set.set_value(std::move(result)); - for (auto shard : shards) { - delete shard; + ((DynamicExtension *) args->extension)->end_job(epoch); + + Q::delete_buffer_query_state(buffer_state); + for (size_t i=0; i<states.size(); i++) { + Q::delete_query_state(states[i]); } - return flattened; + delete args; } -private: - Buffer *m_buffer; + void schedule_reconstruction() { + auto epoch = create_new_epoch(); + /* + * the reconstruction process calls end_job(), + * so we must start one before calling it + */ + + ReconstructionArgs<R, S, Q, L> *args = new ReconstructionArgs<R, S, Q, L>(); + args->epoch = epoch; + args->merges = epoch->get_structure()->get_reconstruction_tasks(m_buffer->get_high_watermark()); + args->extension = this; + args->compaction = false; + /* NOTE: args is deleted by the reconstruction job, so shouldn't be freed here */ + + m_sched.schedule_job(reconstruction, 0, args, RECONSTRUCTION); + } - size_t m_scale_factor; - double m_max_delete_prop; + std::future<std::vector<R>> schedule_query(void *query_parms) { + QueryArgs<R, S, Q, L> *args = new QueryArgs<R, S, Q, L>(); + args->extension = this; + args->query_parms = query_parms; + auto result = args->result_set.get_future(); - std::vector<InternalLevel<R, S, Q> *> m_levels; + m_sched.schedule_job(async_query, 0, args, QUERY); - Buffer *get_buffer() { - return m_buffer; + return result; } int internal_append(const R &rec, bool ts) { - Buffer *buffer; - while (!(buffer = get_buffer())) - ; - - if (buffer->is_full()) { - merge_buffer(); + if (m_buffer->is_at_low_watermark()) { + auto old = false; + + if (m_reconstruction_scheduled.compare_exchange_strong(old, true)) { + schedule_reconstruction(); + } } - return buffer->append(rec, ts); + /* this will fail if the HWM is reached and return 0 */ + return m_buffer->append(rec, ts); } - std::vector<Wrapped<R>> filter_deletes(std::vector<Wrapped<R>> &records, ShardID shid, Buffer *buffer) { - if constexpr (!Q::SKIP_DELETE_FILTER) { + static std::vector<Wrapped<R>> filter_deletes(std::vector<Wrapped<R>> &records, ShardID shid, Structure *vers, BufView *bview) { + if constexpr (Q::SKIP_DELETE_FILTER) { return records; } std::vector<Wrapped<R>> processed_records; processed_records.reserve(records.size()); - // For delete tagging, we just need to check the delete bit on each - // record. + /* + * For delete tagging, we just need to check the delete bit + * on each record. + */ if constexpr (D == DeletePolicy::TAGGING) { for (auto &rec : records) { if (rec.is_deleted()) { @@ -309,25 +646,35 @@ private: return processed_records; } - // For tombstone deletes, we need to search for the corresponding - // tombstone for each record. + /* + * For tombstone deletes, we need to search for the corresponding + * tombstone for each record. + */ for (auto &rec : records) { if (rec.is_tombstone()) { continue; } - if (buffer->check_tombstone(rec.rec)) { - continue; + // FIXME: need to figure out how best to re-enable the buffer tombstone + // check in the correct manner. + //if (buffview.check_tombstone(rec.rec)) { + //continue; + //} + + for (size_t i=0; i<bview->get_record_count(); i++) { + if (bview->get(i)->is_tombstone() && bview->get(i)->rec == rec.rec) { + continue; + } } if (shid != INVALID_SHID) { for (size_t lvl=0; lvl<=shid.level_idx; lvl++) { - if (m_levels[lvl]->check_tombstone(0, rec.rec)) { + if (vers->get_levels()[lvl]->check_tombstone(0, rec.rec)) { continue; } } - if (m_levels[shid.level_idx]->check_tombstone(shid.shard_idx + 1, rec.rec)) { + if (vers->get_levels()[shid.level_idx]->check_tombstone(shid.shard_idx + 1, rec.rec)) { continue; } } @@ -338,197 +685,70 @@ private: return processed_records; } - /* - * Add a new level to the LSM Tree and return that level's index. Will - * automatically determine whether the level should be on memory or on disk, - * and act appropriately. - */ - inline level_index grow() { - level_index new_idx; - - size_t new_shard_cnt = (L == LayoutPolicy::LEVELING) ? 1 : m_scale_factor; - new_idx = m_levels.size(); - if (new_idx > 0) { - assert(m_levels[new_idx - 1]->get_shard(0)->get_tombstone_count() == 0); - } - m_levels.emplace_back(new InternalLevel<R, Shard, Q>(new_idx, new_shard_cnt)); - - return new_idx; - } - - - // Merge the memory table down into the tree, completing any required other - // merges to make room for it. - inline void merge_buffer() { - auto buffer = get_buffer(); - - if (!can_merge_with(0, buffer->get_record_count())) { - merge_down(0); + void SetThreadAffinity() { + int core = m_next_core.fetch_add(1) % m_core_cnt; + cpu_set_t mask; + CPU_ZERO(&mask); + + switch (core % 2) { + case 0: + // 0 |-> 0 + // 2 |-> 2 + // 4 |-> 4 + core = core; + break; + case 1: + // 1 |-> 28 + // 3 |-> 30 + // 5 |-> 32 + core = (core - 1) + m_core_cnt; + break; } - - merge_buffer_into_l0(buffer); - enforce_delete_maximum(0); - - buffer->truncate(); - return; + CPU_SET(core, &mask); + ::sched_setaffinity(0, sizeof(mask), &mask); } - /* - * Merge the specified level down into the tree. The level index must be - * non-negative (i.e., this function cannot be used to merge the buffer). This - * routine will recursively perform any necessary merges to make room for the - * specified level. - */ - inline void merge_down(level_index idx) { - level_index merge_base_level = find_mergable_level(idx); - if (merge_base_level == -1) { - merge_base_level = grow(); - } - for (level_index i=merge_base_level; i>idx; i--) { - merge_levels(i, i-1); - enforce_delete_maximum(i); - } + void end_job(_Epoch *epoch) { + epoch_ptr old, new_ptr; - return; - } + do { + if (m_previous_epoch.load().epoch == epoch) { + old = m_previous_epoch; + /* + * This could happen if we get into the system during a + * transition. In this case, we can just back out and retry + */ + if (old.epoch == nullptr) { + continue; + } - /* - * Find the first level below the level indicated by idx that - * is capable of sustaining a merge operation and return its - * level index. If no such level exists, returns -1. Also - * returns -1 if idx==0, and no such level exists, to simplify - * the logic of the first merge. - */ - inline level_index find_mergable_level(level_index idx, Buffer *buffer=nullptr) { + assert(old.refcnt > 0); - if (idx == 0 && m_levels.size() == 0) return -1; + new_ptr = {old.epoch, old.refcnt - 1}; + if (m_previous_epoch.compare_exchange_strong(old, new_ptr)) { + break; + } + } else { + old = m_current_epoch; + /* + * This could happen if we get into the system during a + * transition. In this case, we can just back out and retry + */ + if (old.epoch == nullptr) { + continue; + } - bool level_found = false; - bool disk_level; - level_index merge_level_idx; + assert(old.refcnt > 0); - size_t incoming_rec_cnt = get_level_record_count(idx, buffer); - for (level_index i=idx+1; i<m_levels.size(); i++) { - if (can_merge_with(i, incoming_rec_cnt)) { - return i; + new_ptr = {old.epoch, old.refcnt - 1}; + if (m_current_epoch.compare_exchange_strong(old, new_ptr)) { + break; + } } - - incoming_rec_cnt = get_level_record_count(i); - } - - return -1; - } - - /* - * Merge the level specified by incoming level into the level specified - * by base level. The two levels should be sequential--i.e. no levels - * are skipped in the merge process--otherwise the tombstone ordering - * invariant may be violated by the merge operation. - */ - inline void merge_levels(level_index base_level, level_index incoming_level) { - // merging two memory levels - if constexpr (L == LayoutPolicy::LEVELING) { - auto tmp = m_levels[base_level]; - m_levels[base_level] = InternalLevel<R, Shard, Q>::merge_levels(m_levels[base_level], m_levels[incoming_level]); - mark_as_unused(tmp); - } else { - m_levels[base_level]->append_merged_shards(m_levels[incoming_level]); - } - - mark_as_unused(m_levels[incoming_level]); - m_levels[incoming_level] = new InternalLevel<R, Shard, Q>(incoming_level, (L == LayoutPolicy::LEVELING) ? 1 : m_scale_factor); - } - - - inline void merge_buffer_into_l0(Buffer *buffer) { - assert(m_levels[0]); - if constexpr (L == LayoutPolicy::LEVELING) { - // FIXME: Kludgey implementation due to interface constraints. - auto old_level = m_levels[0]; - auto temp_level = new InternalLevel<R, Shard, Q>(0, 1); - temp_level->append_buffer(buffer); - auto new_level = InternalLevel<R, Shard, Q>::merge_levels(old_level, temp_level); - - m_levels[0] = new_level; - delete temp_level; - mark_as_unused(old_level); - } else { - m_levels[0]->append_buffer(buffer); - } - } - - /* - * Mark a given memory level as no-longer in use by the tree. For now this - * will just free the level. In future, this will be more complex as the - * level may not be able to immediately be deleted, depending upon who - * else is using it. - */ - inline void mark_as_unused(InternalLevel<R, Shard, Q> *level) { - delete level; - } - - /* - * Check the tombstone proportion for the specified level and - * if the limit is exceeded, forcibly merge levels until all - * levels below idx are below the limit. - */ - inline void enforce_delete_maximum(level_index idx) { - long double ts_prop = (long double) m_levels[idx]->get_tombstone_count() / (long double) calc_level_record_capacity(idx); - - if (ts_prop > (long double) m_max_delete_prop) { - merge_down(idx); - } - - return; - } - - /* - * Assume that level "0" should be larger than the buffer. The buffer - * itself is index -1, which should return simply the buffer capacity. - */ - inline size_t calc_level_record_capacity(level_index idx) { - return get_buffer()->get_capacity() * pow(m_scale_factor, idx+1); + } while (true); } - /* - * Returns the actual number of records present on a specified level. An - * index value of -1 indicates the memory table. Can optionally pass in - * a pointer to the memory table to use, if desired. Otherwise, there are - * no guarantees about which buffer will be accessed if level_index is -1. - */ - inline size_t get_level_record_count(level_index idx, Buffer *buffer=nullptr) { - - assert(idx >= -1); - if (idx == -1) { - return (buffer) ? buffer->get_record_count() : get_buffer()->get_record_count(); - } - - return (m_levels[idx]) ? m_levels[idx]->get_record_count() : 0; - } - - /* - * Determines if the specific level can merge with another record containing - * incoming_rec_cnt number of records. The provided level index should be - * non-negative (i.e., not refer to the buffer) and will be automatically - * translated into the appropriate index into either the disk or memory level - * vector. - */ - inline bool can_merge_with(level_index idx, size_t incoming_rec_cnt) { - if (idx>= m_levels.size() || !m_levels[idx]) { - return false; - } - - if (L == LayoutPolicy::LEVELING) { - return m_levels[idx]->get_record_count() + incoming_rec_cnt <= calc_level_record_capacity(idx); - } else { - return m_levels[idx]->get_shard_count() < m_scale_factor; - } - - // unreachable - assert(true); - } }; - } |