diff options
| author | Douglas Rumbaugh <dbr4@psu.edu> | 2023-07-25 11:17:36 -0400 |
|---|---|---|
| committer | Douglas Rumbaugh <dbr4@psu.edu> | 2023-07-25 11:17:36 -0400 |
| commit | 37434f5baf632e839dc14b3c7d8745287cb9368a (patch) | |
| tree | 4b9a77c25b734872a1b815cc7c0bad6258784601 /benchmarks/include/bench.h | |
| parent | 9e869d32344d5bd8ee703a0733d80d48d458217c (diff) | |
| download | dynamic-extension-37434f5baf632e839dc14b3c7d8745287cb9368a.tar.gz | |
Benchmarks: mtree and vptree benchmark updates
Note: cosine similarity doesn't seem to work for VPTree--I don't think
that it is actually a metric, upon further research. At the very least I
can't find anyone claiming it is, and I've found several people claiming
it isn't. On testing with the Word2Vec data, Euclidean distance works
insofar as the M-Tree and VPTree return the same KNN results for test
queries, whereas Cosine Similarity does not work.
Diffstat (limited to 'benchmarks/include/bench.h')
| -rw-r--r-- | benchmarks/include/bench.h | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/benchmarks/include/bench.h b/benchmarks/include/bench.h index 12d0a7e..586ff12 100644 --- a/benchmarks/include/bench.h +++ b/benchmarks/include/bench.h @@ -85,7 +85,7 @@ static bool insert_tput_bench(DE &de_index, std::fstream &file, size_t insert_cn } template <typename DE, de::RecordInterface R, typename QP, bool PROGRESS=true> -static bool query_latency_bench(DE &de_index, std::vector<QP> queries, size_t trial_cnt=100) { +static bool query_latency_bench(DE &de_index, std::vector<QP> queries, size_t trial_cnt=1) { char progbuf[25]; if constexpr (PROGRESS) { sprintf(progbuf, "querying:"); @@ -102,6 +102,7 @@ static bool query_latency_bench(DE &de_index, std::vector<QP> queries, size_t tr auto start = std::chrono::high_resolution_clock::now(); for (size_t j=0; j<queries.size(); j++) { auto res = de_index.query(&queries[j]); + total_results += res.size(); } auto stop = std::chrono::high_resolution_clock::now(); |