From 7be77899cb9da63db7e0e69c34218e1815240a79 Mon Sep 17 00:00:00 2001 From: Douglas Rumbaugh Date: Mon, 9 Jun 2025 15:33:12 -0400 Subject: updates --- chapters/design-space.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'chapters') diff --git a/chapters/design-space.tex b/chapters/design-space.tex index 64b658f..9865b26 100644 --- a/chapters/design-space.tex +++ b/chapters/design-space.tex @@ -140,7 +140,7 @@ and so we will need to derive this result using a different approach. \begin{theorem} The amortized insertion cost for generalized BSM with a growth factor of -$s$ is $\Theta\left(\frac{B(n)}{n} \cdot \frac{1}{2}(s-1) \cdot ( (s-1)\log_s n + s)\right)$. +$s$ is $\Theta\left(\frac{B(n)}{n} \cdot s\log_s n)\right)$. \end{theorem} \begin{proof} -- cgit v1.2.3